forked from open-mmlab/mmyolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolov7_l_syncbn_fast_8x16b-300e_coco.py
324 lines (297 loc) · 10.4 KB
/
yolov7_l_syncbn_fast_8x16b-300e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
_base_ = ['../_base_/default_runtime.py', '../_base_/det_p5_tta.py']
# ========================Frequently modified parameters======================
# -----data related-----
data_root = 'data/coco/' # Root path of data
# Path of train annotation file
train_ann_file = 'annotations/instances_train2017.json'
train_data_prefix = 'train2017/' # Prefix of train image path
# Path of val annotation file
val_ann_file = 'annotations/instances_val2017.json'
val_data_prefix = 'val2017/' # Prefix of val image path
num_classes = 80 # Number of classes for classification
# Batch size of a single GPU during training
train_batch_size_per_gpu = 16
# Worker to pre-fetch data for each single GPU during training
train_num_workers = 8
# persistent_workers must be False if num_workers is 0
persistent_workers = True
# -----model related-----
# Basic size of multi-scale prior box
anchors = [
[(12, 16), (19, 36), (40, 28)], # P3/8
[(36, 75), (76, 55), (72, 146)], # P4/16
[(142, 110), (192, 243), (459, 401)] # P5/32
]
# -----train val related-----
# Base learning rate for optim_wrapper. Corresponding to 8xb16=128 bs
base_lr = 0.01
max_epochs = 300 # Maximum training epochs
num_epoch_stage2 = 30 # The last 30 epochs switch evaluation interval
val_interval_stage2 = 1 # Evaluation interval
model_test_cfg = dict(
# The config of multi-label for multi-class prediction.
multi_label=True,
# The number of boxes before NMS.
nms_pre=30000,
score_thr=0.001, # Threshold to filter out boxes.
nms=dict(type='nms', iou_threshold=0.65), # NMS type and threshold
max_per_img=300) # Max number of detections of each image
# ========================Possible modified parameters========================
# -----data related-----
img_scale = (640, 640) # width, height
# Dataset type, this will be used to define the dataset
dataset_type = 'YOLOv5CocoDataset'
# Batch size of a single GPU during validation
val_batch_size_per_gpu = 1
# Worker to pre-fetch data for each single GPU during validation
val_num_workers = 2
# Config of batch shapes. Only on val.
# It means not used if batch_shapes_cfg is None.
batch_shapes_cfg = dict(
type='BatchShapePolicy',
batch_size=val_batch_size_per_gpu,
img_size=img_scale[0],
# The image scale of padding should be divided by pad_size_divisor
size_divisor=32,
# Additional paddings for pixel scale
extra_pad_ratio=0.5)
# -----model related-----
strides = [8, 16, 32] # Strides of multi-scale prior box
num_det_layers = 3 # The number of model output scales
norm_cfg = dict(type='BN', momentum=0.03, eps=0.001)
# Data augmentation
max_translate_ratio = 0.2 # YOLOv5RandomAffine
scaling_ratio_range = (0.1, 2.0) # YOLOv5RandomAffine
mixup_prob = 0.15 # YOLOv5MixUp
randchoice_mosaic_prob = [0.8, 0.2]
mixup_alpha = 8.0 # YOLOv5MixUp
mixup_beta = 8.0 # YOLOv5MixUp
# -----train val related-----
loss_cls_weight = 0.3
loss_bbox_weight = 0.05
loss_obj_weight = 0.7
# BatchYOLOv7Assigner params
simota_candidate_topk = 10
simota_iou_weight = 3.0
simota_cls_weight = 1.0
prior_match_thr = 4. # Priori box matching threshold
obj_level_weights = [4., 1.,
0.4] # The obj loss weights of the three output layers
lr_factor = 0.1 # Learning rate scaling factor
weight_decay = 0.0005
save_epoch_intervals = 1 # Save model checkpoint and validation intervals
max_keep_ckpts = 3 # The maximum checkpoints to keep.
# Single-scale training is recommended to
# be turned on, which can speed up training.
env_cfg = dict(cudnn_benchmark=True)
# ===============================Unmodified in most cases====================
model = dict(
type='YOLODetector',
data_preprocessor=dict(
type='YOLOv5DetDataPreprocessor',
mean=[0., 0., 0.],
std=[255., 255., 255.],
bgr_to_rgb=True),
backbone=dict(
type='YOLOv7Backbone',
arch='L',
norm_cfg=norm_cfg,
act_cfg=dict(type='SiLU', inplace=True)),
neck=dict(
type='YOLOv7PAFPN',
block_cfg=dict(
type='ELANBlock',
middle_ratio=0.5,
block_ratio=0.25,
num_blocks=4,
num_convs_in_block=1),
upsample_feats_cat_first=False,
in_channels=[512, 1024, 1024],
# The real output channel will be multiplied by 2
out_channels=[128, 256, 512],
norm_cfg=norm_cfg,
act_cfg=dict(type='SiLU', inplace=True)),
bbox_head=dict(
type='YOLOv7Head',
head_module=dict(
type='YOLOv7HeadModule',
num_classes=num_classes,
in_channels=[256, 512, 1024],
featmap_strides=strides,
num_base_priors=3),
prior_generator=dict(
type='mmdet.YOLOAnchorGenerator',
base_sizes=anchors,
strides=strides),
# scaled based on number of detection layers
loss_cls=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=loss_cls_weight *
(num_classes / 80 * 3 / num_det_layers)),
loss_bbox=dict(
type='IoULoss',
iou_mode='ciou',
bbox_format='xywh',
reduction='mean',
loss_weight=loss_bbox_weight * (3 / num_det_layers),
return_iou=True),
loss_obj=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=loss_obj_weight *
((img_scale[0] / 640)**2 * 3 / num_det_layers)),
prior_match_thr=prior_match_thr,
obj_level_weights=obj_level_weights,
# BatchYOLOv7Assigner params
simota_candidate_topk=simota_candidate_topk,
simota_iou_weight=simota_iou_weight,
simota_cls_weight=simota_cls_weight),
test_cfg=model_test_cfg)
pre_transform = [
dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
dict(type='LoadAnnotations', with_bbox=True)
]
mosiac4_pipeline = [
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
max_translate_ratio=max_translate_ratio, # note
scaling_ratio_range=scaling_ratio_range, # note
# img_scale is (width, height)
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114)),
]
mosiac9_pipeline = [
dict(
type='Mosaic9',
img_scale=img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
max_translate_ratio=max_translate_ratio, # note
scaling_ratio_range=scaling_ratio_range, # note
# img_scale is (width, height)
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114)),
]
randchoice_mosaic_pipeline = dict(
type='RandomChoice',
transforms=[mosiac4_pipeline, mosiac9_pipeline],
prob=randchoice_mosaic_prob)
train_pipeline = [
*pre_transform,
randchoice_mosaic_pipeline,
dict(
type='YOLOv5MixUp',
alpha=mixup_alpha, # note
beta=mixup_beta, # note
prob=mixup_prob,
pre_transform=[*pre_transform, randchoice_mosaic_pipeline]),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]
train_dataloader = dict(
batch_size=train_batch_size_per_gpu,
num_workers=train_num_workers,
persistent_workers=persistent_workers,
pin_memory=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='yolov5_collate'), # FASTER
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file=train_ann_file,
data_prefix=dict(img=train_data_prefix),
filter_cfg=dict(filter_empty_gt=False, min_size=32),
pipeline=train_pipeline))
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
dict(type='YOLOv5KeepRatioResize', scale=img_scale),
dict(
type='LetterResize',
scale=img_scale,
allow_scale_up=False,
pad_val=dict(img=114)),
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'pad_param'))
]
val_dataloader = dict(
batch_size=val_batch_size_per_gpu,
num_workers=val_num_workers,
persistent_workers=persistent_workers,
pin_memory=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
test_mode=True,
data_prefix=dict(img=val_data_prefix),
ann_file=val_ann_file,
pipeline=test_pipeline,
batch_shapes_cfg=batch_shapes_cfg))
test_dataloader = val_dataloader
param_scheduler = None
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='SGD',
lr=base_lr,
momentum=0.937,
weight_decay=weight_decay,
nesterov=True,
batch_size_per_gpu=train_batch_size_per_gpu),
constructor='YOLOv7OptimWrapperConstructor')
default_hooks = dict(
param_scheduler=dict(
type='YOLOv5ParamSchedulerHook',
scheduler_type='cosine',
lr_factor=lr_factor, # note
max_epochs=max_epochs),
checkpoint=dict(
type='CheckpointHook',
save_param_scheduler=False,
interval=save_epoch_intervals,
save_best='auto',
max_keep_ckpts=max_keep_ckpts))
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0001,
update_buffers=True,
strict_load=False,
priority=49)
]
val_evaluator = dict(
type='mmdet.CocoMetric',
proposal_nums=(100, 1, 10), # Can be accelerated
ann_file=data_root + val_ann_file,
metric='bbox')
test_evaluator = val_evaluator
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=max_epochs,
val_interval=save_epoch_intervals,
dynamic_intervals=[(max_epochs - num_epoch_stage2, val_interval_stage2)])
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')