forked from aelgabli/GADMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdynamic_LinearRegression_Real.m
125 lines (84 loc) · 3.09 KB
/
dynamic_LinearRegression_Real.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
clear
close all
%% data allocation for linear regression
[Xdata_28] = load('data28/data.txt'); % UCLA Housing dataset
[ydata_28] = load('data28/y.txt');
[Xdata_29] = load('data29/data.txt'); % Body Fat dataset
[ydata_29] = load('data29/y.txt');
[Xdata_30] = load('data30/data.txt'); % Age of abalone dataset
[ydata_30] = load('data30/y.txt');
num_feature=size(Xdata_29,2);
total_sample=size(Xdata_29,1);
per_split=25;
num_workers=floor(total_sample/per_split);
total_sample =num_workers*per_split;
num_sample=per_split;
num_iter1=40000;
num_iter=num_iter1;
X=cell(num_workers);
y=cell(num_workers);
diagmatrix=diag(ones(total_sample,1));
Hmax=zeros(num_workers,1);
for n=1:num_workers
first = (n-1)*per_split+1;
last = first+per_split-1;
X{n}=Xdata_29(first:last,1:num_feature);
y{n}=ydata_29(first:last);
Hmax(n)=max(eig(X{n}'*X{n}));
end
num_feature=size(X{1},2);
X_fede=[];
y_fede=[];
for i=1:num_workers
X_fede=[X_fede;X{i}];
y_fede=[y_fede;y{i}];
end
lambda=0.000;
%% Optimal solution
XX=X_fede;
YY=y_fede;
size = num_feature;
obj0 = opt_sol_closedForm(XX,YY);%(0.5*sum_square(XX*z1 - YY));
%obj1 = opt_sol(XX,YY,num_feature);%(0.5*sum_square(XX*z1 - YY));
opt_obj = obj0*ones(1,num_iter);
% %% DG, DGD, and LAG baselines
% [obj_GD, loss_GD, time_GD, obj_DGD, loss_DGD, time_DGD,...
% obj_LAG_PS, loss_LAG_PS, time_lagPS, comm_iter_final_LAG_PS,...
% obj_LAG_WK, loss_LAG_WK, time_lagWK, comm_iter_final_LAG_WK,...
% obj_cyclic_IAG, loss_cyclic_IAG, obj_R_IAG, loss_R_IAG, stepsize2]=GD_DGD_LAG(X,y, num_workers, num_feature, Hmax, num_iter, obj0, X_fede, y_fede, num_sample);
%
%
%
%
%
% %num_iter=500000;
% acc = 1E-4;
%
% [obj_dualAvg, loss_dualAvg, Iter_dualAvg, dualAvg_time] = dual_averaging(X_fede,y_fede, num_workers, num_feature, per_split, num_iter, obj0, acc, stepsize2);
%
%% Group-ADMM
num_iter=20000;
rho = 0.1;
acc = 1E-4;
coherence_Time=1E9;
[path, pathCost]=findPath(num_workers);
%path=1:num_workers;
%pathCost=ones(1,num_workers);
% [obj_GADMM_rho3, loss_GADMM_rho3, Iter_3, gadmm_time3, com_cost] = dynamic_group_ADMM_closedForm(X_fede,y_fede, rho, num_workers, num_feature...
% , num_sample, num_iter, obj0, acc, path, pathCost, coherence_Time);
%
coherence_Time=50;
[obj_GADMM_rho3_d, loss_GADMM_rho3_d, Iter_3_d, gadmm_time3_d, com_cost_d] = dynamic_group_ADMM_closedForm(X_fede,y_fede, rho, num_workers, num_feature...
, num_sample, num_iter, obj0, acc, path, pathCost, coherence_Time);
%coherence_Time=50;
[obj_GADMM_rho3_d2, loss_GADMM_rho3_d2, Iter_3_d2, gadmm_time3_d2, com_cost_d2] = dynamic_group_ADMM_closedForm_v2(X_fede,y_fede, rho, num_workers, num_feature...
, num_sample, num_iter, obj0, acc, path, pathCost, coherence_Time);
% coherence_Time=10;
%
% [obj_GADMM_rho3_d, loss_GADMM_rho3_d, Iter_3_d, gadmm_time3_d, com_cost_d] = dynamic_group_ADMM_cvx_v2(X_fede,y_fede, rho, num_workers, num_feature...
% , num_sample, num_iter, obj0, acc, path, pathCost, coherence_Time);
semilogy(loss_GADMM_rho3_d,'r-','LineWidth',3);
hold on
semilogy(loss_GADMM_rho3_d2,'b--','LineWidth',3);
hold on
kkk=1;