forked from open-mmlab/mmcv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
551 lines (497 loc) · 23.2 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import glob
import os
import platform
import re
import warnings
from pkg_resources import DistributionNotFound, get_distribution
from setuptools import find_packages, setup
EXT_TYPE = ''
try:
import torch
if torch.__version__ == 'parrots':
from parrots.utils.build_extension import BuildExtension
EXT_TYPE = 'parrots'
elif (hasattr(torch, 'is_mlu_available') and torch.is_mlu_available()) or \
os.getenv('FORCE_MLU', '0') == '1':
from torch_mlu.utils.cpp_extension import BuildExtension
EXT_TYPE = 'pytorch'
else:
from torch.utils.cpp_extension import BuildExtension
EXT_TYPE = 'pytorch'
cmd_class = {'build_ext': BuildExtension}
except ModuleNotFoundError:
cmd_class = {}
print('Skip building ext ops due to the absence of torch.')
def choose_requirement(primary, secondary):
"""If some version of primary requirement installed, return primary, else
return secondary."""
try:
name = re.split(r'[!<>=]', primary)[0]
get_distribution(name)
except DistributionNotFound:
return secondary
return str(primary)
def get_version():
version_file = 'mmcv/version.py'
with open(version_file, encoding='utf-8') as f:
exec(compile(f.read(), version_file, 'exec'))
return locals()['__version__']
def parse_requirements(fname='requirements/runtime.txt', with_version=True):
"""Parse the package dependencies listed in a requirements file but strips
specific versioning information.
Args:
fname (str): path to requirements file
with_version (bool, default=False): if True include version specs
Returns:
List[str]: list of requirements items
CommandLine:
python -c "import setup; print(setup.parse_requirements())"
"""
import sys
from os.path import exists
require_fpath = fname
def parse_line(line):
"""Parse information from a line in a requirements text file."""
if line.startswith('-r '):
# Allow specifying requirements in other files
target = line.split(' ')[1]
for info in parse_require_file(target):
yield info
else:
info = {'line': line}
if line.startswith('-e '):
info['package'] = line.split('#egg=')[1]
else:
# Remove versioning from the package
pat = '(' + '|'.join(['>=', '==', '>']) + ')'
parts = re.split(pat, line, maxsplit=1)
parts = [p.strip() for p in parts]
info['package'] = parts[0]
if len(parts) > 1:
op, rest = parts[1:]
if ';' in rest:
# Handle platform specific dependencies
# http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
version, platform_deps = map(str.strip,
rest.split(';'))
info['platform_deps'] = platform_deps
else:
version = rest # NOQA
info['version'] = (op, version)
yield info
def parse_require_file(fpath):
with open(fpath) as f:
for line in f.readlines():
line = line.strip()
if line and not line.startswith('#'):
yield from parse_line(line)
def gen_packages_items():
if exists(require_fpath):
for info in parse_require_file(require_fpath):
parts = [info['package']]
if with_version and 'version' in info:
parts.extend(info['version'])
if not sys.version.startswith('3.4'):
# apparently package_deps are broken in 3.4
platform_deps = info.get('platform_deps')
if platform_deps is not None:
parts.append(';' + platform_deps)
item = ''.join(parts)
yield item
packages = list(gen_packages_items())
return packages
install_requires = parse_requirements()
try:
# OpenCV installed via conda.
import cv2 # NOQA: F401
major, minor, *rest = cv2.__version__.split('.')
if int(major) < 3:
raise RuntimeError(
f'OpenCV >=3 is required but {cv2.__version__} is installed')
except ImportError:
# If first not installed install second package
CHOOSE_INSTALL_REQUIRES = [('opencv-python-headless>=3',
'opencv-python>=3')]
for main, secondary in CHOOSE_INSTALL_REQUIRES:
install_requires.append(choose_requirement(main, secondary))
def get_extensions():
extensions = []
if os.getenv('MMCV_WITH_TRT', '0') != '0':
# Following strings of text style are from colorama package
bright_style, reset_style = '\x1b[1m', '\x1b[0m'
red_text, blue_text = '\x1b[31m', '\x1b[34m'
white_background = '\x1b[107m'
msg = white_background + bright_style + red_text
msg += 'DeprecationWarning: ' + \
'Custom TensorRT Ops will be deprecated in future. '
msg += blue_text + \
'Welcome to use the unified model deployment toolbox '
msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
msg += reset_style
warnings.warn(msg)
ext_name = 'mmcv._ext_trt'
from torch.utils.cpp_extension import include_paths, library_paths
library_dirs = []
libraries = []
include_dirs = []
tensorrt_path = os.getenv('TENSORRT_DIR', '0')
tensorrt_lib_path = glob.glob(
os.path.join(tensorrt_path, 'targets', '*', 'lib'))[0]
library_dirs += [tensorrt_lib_path]
libraries += ['nvinfer', 'nvparsers', 'nvinfer_plugin']
libraries += ['cudart']
define_macros = []
extra_compile_args = {'cxx': []}
include_path = os.path.abspath('./mmcv/ops/csrc/common/cuda')
include_trt_path = os.path.abspath('./mmcv/ops/csrc/tensorrt')
include_dirs.append(include_path)
include_dirs.append(include_trt_path)
include_dirs.append(os.path.join(tensorrt_path, 'include'))
include_dirs += include_paths(cuda=True)
op_files = glob.glob('./mmcv/ops/csrc/tensorrt/plugins/*')
define_macros += [('MMCV_WITH_CUDA', None)]
define_macros += [('MMCV_WITH_TRT', None)]
cuda_args = os.getenv('MMCV_CUDA_ARGS')
extra_compile_args['nvcc'] = [cuda_args] if cuda_args else []
# prevent cub/thrust conflict with other python library
# More context See issues #1454
extra_compile_args['nvcc'] += ['-Xcompiler=-fno-gnu-unique']
library_dirs += library_paths(cuda=True)
from setuptools import Extension
ext_ops = Extension(
name=ext_name,
sources=op_files,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
language='c++',
library_dirs=library_dirs,
libraries=libraries)
extensions.append(ext_ops)
if os.getenv('MMCV_WITH_OPS', '0') == '0':
return extensions
if EXT_TYPE == 'parrots':
ext_name = 'mmcv._ext'
from parrots.utils.build_extension import Extension
# new parrots op impl do not use MMCV_USE_PARROTS
# define_macros = [('MMCV_USE_PARROTS', None)]
define_macros = []
include_dirs = []
op_files = glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cu') +\
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') +\
glob.glob('./mmcv/ops/csrc/parrots/*.cpp')
op_files.remove('./mmcv/ops/csrc/pytorch/cuda/iou3d_cuda.cu')
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda'))
cuda_args = os.getenv('MMCV_CUDA_ARGS')
extra_compile_args = {
'nvcc': [cuda_args, '-std=c++14'] if cuda_args else ['-std=c++14'],
'cxx': ['-std=c++14'],
}
if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1':
define_macros += [('MMCV_WITH_CUDA', None)]
extra_compile_args['nvcc'] += [
'-D__CUDA_NO_HALF_OPERATORS__',
'-D__CUDA_NO_HALF_CONVERSIONS__',
'-D__CUDA_NO_HALF2_OPERATORS__',
]
ext_ops = Extension(
name=ext_name,
sources=op_files,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
cuda=True,
pytorch=True)
extensions.append(ext_ops)
elif EXT_TYPE == 'pytorch':
ext_name = 'mmcv._ext'
from torch.utils.cpp_extension import CppExtension, CUDAExtension
# prevent ninja from using too many resources
try:
import psutil
num_cpu = len(psutil.Process().cpu_affinity())
cpu_use = max(4, num_cpu - 1)
except (ModuleNotFoundError, AttributeError):
cpu_use = 4
os.environ.setdefault('MAX_JOBS', str(cpu_use))
define_macros = []
# Before PyTorch1.8.0, when compiling CUDA code, `cxx` is a
# required key passed to PyTorch. Even if there is no flag passed
# to cxx, users also need to pass an empty list to PyTorch.
# Since PyTorch1.8.0, it has a default value so users do not need
# to pass an empty list anymore.
# More details at https://github.com/pytorch/pytorch/pull/45956
extra_compile_args = {'cxx': []}
# Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses
# c++14 features, the argument ['std=c++14'] must be added here.
# However, in the windows environment, some standard libraries
# will depend on c++17 or higher. In fact, for the windows
# environment, the compiler will choose the appropriate compiler
# to compile those cpp files, so there is no need to add the
# argument
if platform.system() != 'Windows':
extra_compile_args['cxx'] = ['-std=c++14']
include_dirs = []
extra_objects = []
is_rocm_pytorch = False
try:
from torch.utils.cpp_extension import ROCM_HOME
is_rocm_pytorch = True if ((torch.version.hip is not None) and
(ROCM_HOME is not None)) else False
except ImportError:
pass
if is_rocm_pytorch or torch.cuda.is_available() or os.getenv(
'FORCE_CUDA', '0') == '1':
if is_rocm_pytorch:
define_macros += [('MMCV_WITH_HIP', None)]
define_macros += [('MMCV_WITH_CUDA', None)]
cuda_args = os.getenv('MMCV_CUDA_ARGS')
extra_compile_args['nvcc'] = [cuda_args] if cuda_args else []
if is_rocm_pytorch and platform.system() != 'Windows':
extra_compile_args['nvcc'] += \
['--gpu-max-threads-per-block=1024']
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cu') + \
glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cpp')
extension = CUDAExtension
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/pytorch'))
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda'))
elif (hasattr(torch, 'is_mlu_available') and
torch.is_mlu_available()) or \
os.getenv('FORCE_MLU', '0') == '1':
from torch_mlu.utils.cpp_extension import MLUExtension
def get_mluops_version(file_path):
with open(file_path) as f:
for line in f:
if re.search('MLUOP_MAJOR', line):
major = line.strip().split(' ')[2]
if re.search('MLUOP_MINOR', line):
minor = line.strip().split(' ')[2]
if re.search('MLUOP_PATCHLEVEL', line):
patchlevel = line.strip().split(' ')[2]
mluops_version = f'v{major}.{minor}.{patchlevel}'
return mluops_version
mmcv_mluops_version = get_mluops_version(
'./mmcv/ops/csrc/pytorch/mlu/mlu_common_helper.h')
mlu_ops_path = os.getenv('MMCV_MLU_OPS_PATH')
if mlu_ops_path:
exists_mluops_version = get_mluops_version(
mlu_ops_path + '/bangc-ops/mlu_op.h')
if exists_mluops_version != mmcv_mluops_version:
print('the version of mlu-ops provided is %s,'
' while %s is needed.' %
(exists_mluops_version, mmcv_mluops_version))
exit()
try:
if os.path.exists('mlu-ops'):
if os.path.islink('mlu-ops'):
os.remove('mlu-ops')
os.symlink(mlu_ops_path, 'mlu-ops')
elif os.path.abspath('mlu-ops') != mlu_ops_path:
os.symlink(mlu_ops_path, 'mlu-ops')
else:
os.symlink(mlu_ops_path, 'mlu-ops')
except Exception:
raise FileExistsError(
'mlu-ops already exists, please move it out,'
'or rename or remove it.')
else:
if not os.path.exists('mlu-ops'):
import requests
mluops_url = 'https://github.com/Cambricon/mlu-ops/' + \
'archive/refs/tags/' + mmcv_mluops_version + '.zip'
req = requests.get(mluops_url)
with open('./mlu-ops.zip', 'wb') as f:
try:
f.write(req.content)
except Exception:
raise ImportError('failed to download mlu-ops')
from zipfile import BadZipFile, ZipFile
with ZipFile('./mlu-ops.zip', 'r') as archive:
try:
archive.extractall()
dir_name = archive.namelist()[0].split('/')[0]
os.rename(dir_name, 'mlu-ops')
except BadZipFile:
print('invalid mlu-ops.zip file')
else:
exists_mluops_version = get_mluops_version(
'./mlu-ops/bangc-ops/mlu_op.h')
if exists_mluops_version != mmcv_mluops_version:
print('the version of provided mlu-ops is %s,'
' while %s is needed.' %
(exists_mluops_version, mmcv_mluops_version))
exit()
define_macros += [('MMCV_WITH_MLU', None)]
mlu_args = os.getenv('MMCV_MLU_ARGS')
mluops_includes = []
mluops_includes.append('-I' +
os.path.abspath('./mlu-ops/bangc-ops'))
mluops_includes.append(
'-I' + os.path.abspath('./mlu-ops/bangc-ops/kernels'))
extra_compile_args['cncc'] = [mlu_args] + \
mluops_includes if mlu_args else mluops_includes
extra_compile_args['cxx'] += ['-fno-gnu-unique']
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/mlu/*.cpp') + \
glob.glob('./mmcv/ops/csrc/common/mlu/*.mlu') + \
glob.glob(
'./mlu-ops/bangc-ops/core/**/*.cpp', recursive=True) + \
glob.glob(
'./mlu-ops/bangc-ops/kernels/**/*.cpp', recursive=True) + \
glob.glob(
'./mlu-ops/bangc-ops/kernels/**/*.mlu', recursive=True)
extra_objects = glob.glob(
'./mlu-ops/bangc-ops/kernels/*/x86_64/*.o')
extension = MLUExtension
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/mlu'))
include_dirs.append(os.path.abspath('./mlu-ops/bangc-ops'))
elif (hasattr(torch.backends, 'mps')
and torch.backends.mps.is_available()) or os.getenv(
'FORCE_MPS', '0') == '1':
# objc compiler support
from distutils.unixccompiler import UnixCCompiler
if '.mm' not in UnixCCompiler.src_extensions:
UnixCCompiler.src_extensions.append('.mm')
UnixCCompiler.language_map['.mm'] = 'objc'
define_macros += [('MMCV_WITH_MPS', None)]
extra_compile_args = {}
extra_compile_args['cxx'] = ['-Wall', '-std=c++17']
extra_compile_args['cxx'] += [
'-framework', 'Metal', '-framework', 'Foundation'
]
extra_compile_args['cxx'] += ['-ObjC++']
# src
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \
glob.glob('./mmcv/ops/csrc/common/mps/*.mm') + \
glob.glob('./mmcv/ops/csrc/pytorch/mps/*.mm')
extension = CppExtension
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/mps'))
elif (os.getenv('FORCE_NPU', '0') == '1'):
print(f'Compiling {ext_name} only with CPU and NPU')
try:
from torch_npu.utils.cpp_extension import NpuExtension
define_macros += [('MMCV_WITH_NPU', None)]
extension = NpuExtension
except Exception:
raise ImportError('can not find any torch_npu')
# src
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \
glob.glob('./mmcv/ops/csrc/common/npu/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/npu/*.cpp')
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/npu'))
else:
print(f'Compiling {ext_name} only with CPU')
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp')
extension = CppExtension
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common'))
# Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses
# c++14 features, the argument ['std=c++14'] must be added here.
# However, in the windows environment, some standard libraries
# will depend on c++17 or higher. In fact, for the windows
# environment, the compiler will choose the appropriate compiler
# to compile those cpp files, so there is no need to add the
# argument
if 'nvcc' in extra_compile_args and platform.system() != 'Windows':
extra_compile_args['nvcc'] += ['-std=c++14']
ext_ops = extension(
name=ext_name,
sources=op_files,
include_dirs=include_dirs,
define_macros=define_macros,
extra_objects=extra_objects,
extra_compile_args=extra_compile_args)
extensions.append(ext_ops)
if EXT_TYPE == 'pytorch' and os.getenv('MMCV_WITH_ORT', '0') != '0':
# Following strings of text style are from colorama package
bright_style, reset_style = '\x1b[1m', '\x1b[0m'
red_text, blue_text = '\x1b[31m', '\x1b[34m'
white_background = '\x1b[107m'
msg = white_background + bright_style + red_text
msg += 'DeprecationWarning: ' + \
'Custom ONNXRuntime Ops will be deprecated in future. '
msg += blue_text + \
'Welcome to use the unified model deployment toolbox '
msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
msg += reset_style
warnings.warn(msg)
ext_name = 'mmcv._ext_ort'
import onnxruntime
from torch.utils.cpp_extension import include_paths, library_paths
library_dirs = []
libraries = []
include_dirs = []
ort_path = os.getenv('ONNXRUNTIME_DIR', '0')
library_dirs += [os.path.join(ort_path, 'lib')]
libraries.append('onnxruntime')
define_macros = []
extra_compile_args = {'cxx': []}
include_path = os.path.abspath('./mmcv/ops/csrc/onnxruntime')
include_dirs.append(include_path)
include_dirs.append(os.path.join(ort_path, 'include'))
op_files = glob.glob('./mmcv/ops/csrc/onnxruntime/cpu/*')
if onnxruntime.get_device() == 'GPU' or os.getenv('FORCE_CUDA',
'0') == '1':
define_macros += [('MMCV_WITH_CUDA', None)]
cuda_args = os.getenv('MMCV_CUDA_ARGS')
extra_compile_args['nvcc'] = [cuda_args] if cuda_args else []
op_files += glob.glob('./mmcv/ops/csrc/onnxruntime/gpu/*')
include_dirs += include_paths(cuda=True)
library_dirs += library_paths(cuda=True)
else:
include_dirs += include_paths(cuda=False)
library_dirs += library_paths(cuda=False)
from setuptools import Extension
ext_ops = Extension(
name=ext_name,
sources=op_files,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
language='c++',
library_dirs=library_dirs,
libraries=libraries)
extensions.append(ext_ops)
return extensions
setup(
name='mmcv' if os.getenv('MMCV_WITH_OPS', '0') == '0' else 'mmcv-full',
version=get_version(),
description='OpenMMLab Computer Vision Foundation',
keywords='computer vision',
packages=find_packages(),
include_package_data=True,
classifiers=[
'Development Status :: 4 - Beta',
'License :: OSI Approved :: Apache Software License',
'Operating System :: OS Independent',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Topic :: Utilities',
],
url='https://github.com/open-mmlab/mmcv',
author='MMCV Contributors',
author_email='[email protected]',
install_requires=install_requires,
extras_require={
'all': parse_requirements('requirements.txt'),
'tests': parse_requirements('requirements/test.txt'),
'build': parse_requirements('requirements/build.txt'),
'optional': parse_requirements('requirements/optional.txt'),
},
ext_modules=get_extensions(),
cmdclass=cmd_class,
zip_safe=False)