This repository was archived by the owner on Jun 19, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_ppp.py
2239 lines (1990 loc) · 89.2 KB
/
run_ppp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch.multiprocessing as mp
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
os.environ["NUMEXPR_MAX_THREADS"] = "1"
import argparse
from copy import deepcopy
from datetime import datetime
from glob import glob
import fnmatch
import functools
import importlib
import itertools
import logging
try:
import absl.logging
logging.root.removeHandler(absl.logging._absl_handler)
absl.logging._warn_preinit_stderr = False
except Exception as e:
print(e)
import operator
import os
import queue
import random
import runpy
import shutil
import sys
import time
import h5py
import zarr
from joblib import Parallel, delayed
from natsort import natsorted
import numpy as np
import toml
import json
from git import Repo
from PatchPerPix import util
from PatchPerPix.evaluate import evaluate_patch, evaluate_numinst, evaluate_fg
from PatchPerPix import vote_instances as vi
from evaluateInstanceSegmentation import evaluate_file, summarize_metric_dict
from PatchPerPix.visualize import visualize_patches, visualize_instances
def merge_dicts(sink, source):
if not isinstance(sink, dict) or not isinstance(source, dict):
raise TypeError('Args to merge_dicts should be dicts')
for k, v in source.items():
if isinstance(source[k], dict) and isinstance(sink.get(k), dict):
sink[k] = merge_dicts(sink[k], v)
else:
sink[k] = v
return sink
def backup_and_copy_file(source, target, fn):
target = os.path.join(target, fn)
if os.path.exists(target):
os.replace(target, target + "_backup" + str(int(time.time())))
if source is not None:
source = os.path.join(source, fn)
shutil.copy2(source, target)
def check_file(fn, remove_on_error=False, key=None):
if fn.endswith("zarr"):
try:
fl = zarr.open(fn, 'r')
if key is not None:
tmp = fl[key]
return True
except Exception as e:
logger.info("%s", e)
if remove_on_error:
shutil.rmtree(fn, ignore_errors=True)
return False
elif fn.endswith("hdf"):
try:
with h5py.File(fn, 'r') as fl:
if key is not None:
tmp = fl[key]
return True
except Exception as e:
if remove_on_error:
os.remove(fn)
return False
else:
raise NotImplementedError("invalid file type")
def time_func(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
t0 = datetime.now()
ret = func(*args, **kwargs)
logger.info('time %s: %s', func.__name__, str(datetime.now() - t0))
return ret
return wrapper
def fork(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
try:
logger.info("forking %s", func)
p = mp.Process(target=func, args=args, kwargs=kwargs)
p.start()
p.join()
if p.exitcode != 0:
raise RuntimeError("child process died")
except KeyboardInterrupt:
print("Caught KeyboardInterrupt, terminating workers")
p.terminate()
p.join()
os._exit(-1)
return wrapper
def fork_return(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
try:
logger.info("forking %s", func)
q = mp.Queue()
p = mp.Process(target=func,
args=args + (q,), kwargs=kwargs)
p.start()
results = None
while p.is_alive():
try:
results = q.get_nowait()
except queue.Empty:
time.sleep(2)
if p.exitcode == 0 and results is None:
results = q.get()
p.join()
if p.exitcode != 0:
raise RuntimeError("child process died")
return results
except KeyboardInterrupt:
print("Caught KeyboardInterrupt, terminating workers")
p.terminate()
p.join()
os._exit(-1)
return wrapper
logger = logging.getLogger(__name__)
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', action='append',
help=('Configuration files to use. For defaults, '
'see `config/default.toml`.'))
parser.add_argument('-a', '--app', dest='app', required=True,
help=('Application to use. Choose out of cityscapes, '
'flylight, kaggle, etc.'))
parser.add_argument('-r', '--root', dest='root', default=None,
help='Experiment folder to store results.')
parser.add_argument('-s', '--setup', dest='setup', default=None,
help='Setup for experiment.', required=True)
parser.add_argument('-id', '--exp-id', dest='expid', default=None,
help='ID for experiment.')
parser.add_argument('--comment', default=None,
help='Note that will be printed in log')
# action options
parser.add_argument('-d', '--do', dest='do', default=[], nargs='+',
choices=['all',
'mknet',
'train',
'predict',
'decode',
'label',
'infer',
'validate_checkpoints',
'validate',
'postprocess',
'evaluate',
'cross_validate',
'visualize',
'cleanup'
],
help='Task to do for experiment.')
parser.add_argument('--test-checkpoint', dest='test_checkpoint',
default='last', choices=['last', 'best'],
help=('Specify which checkpoint to use for testing. '
'Either last or best (checkpoint validation).'))
parser.add_argument('--checkpoint', dest='checkpoint', default=None,
type=int,
help='Specify which checkpoint to use.')
parser.add_argument("--run_from_exp", action="store_true",
help='run from setup or from experiment folder')
parser.add_argument("--validate_on_train", action="store_true",
help=('validate using training data'
'(to check for overfitting)'))
parser.add_argument("--test_on_train", action="store_true",
help=('test using training data'
'(to check for overfitting)'))
# train / val / test datasets
parser.add_argument('--input-format', dest='input_format',
choices=['hdf', 'zarr', 'n5', 'tif'],
help='File format of dataset.')
parser.add_argument('--train-data', dest='train_data', default=None,
help='Train dataset to use.')
parser.add_argument('--val-data', dest='val_data', default=None,
help='Validation dataset to use.')
parser.add_argument('--test-data', dest='test_data', default=None,
help='Test dataset to use.')
# parameters for vote instances
parser.add_argument('--vote-instances-cuda', dest='vote_instances_cuda',
action='store_true',
help='Determines if CUDA should be used to process '
'vote instances.')
parser.add_argument('--vote-instances-blockwise',
dest='vote_instances_blockwise',
action='store_true',
help='Determines if vote instances should be '
'processed blockwise.')
parser.add_argument("--debug_args", action="store_true",
help=('Set some low values to certain'
' args for debugging.'))
parser.add_argument("--predict_single", action="store_true",
help=('predict a single sapmle, for testing'))
parser.add_argument("--term_after_patch_graph", action="store_true",
help=('terminate after patch graph, to split into GPU and CPU parts'))
parser.add_argument("--graph_to_inst", action="store_true",
help=('only do patch graph to inst part of vote_instances'))
parser.add_argument('--sample', default=None,
help='Sample to process.')
parser.add_argument("--skip_predict", action="store_true",
help=('skip prediction'
'e.g. during validate_checkpoints.'))
parser.add_argument("--only_predict_decode", action="store_true",
help=('only prediction and decode'
'e.g. during validate_checkpoints.'))
parser.add_argument("--skip_evaluate", action="store_true",
help=('skip evaluation'))
parser.add_argument("--add_partly_val", action="store_true",
help=('add partly labeled data to validation set'))
parser.add_argument('--val_id', default=-1, type=int,
help='id of val params to process')
parser.add_argument("--batched", action="store_true",
help='train with batch size > 1')
parser.add_argument("--no_gp_predict", action="store_true",
help='predict without gunpowder')
parser.add_argument("--predict_monai", action="store_true",
help='predict with monai (overlap+blend)')
args = parser.parse_args()
return args
def create_folders(args, filebase):
# create experiment folder
os.makedirs(filebase, exist_ok=True)
if args.expid is None and args.run_from_exp:
setup = os.path.join(args.app, '02_setups', args.setup)
backup_and_copy_file(setup, filebase, 'train.py')
backup_and_copy_file(setup, filebase, 'mknet.py')
try:
backup_and_copy_file(setup, filebase, 'torch_loss.py')
except FileNotFoundError:
pass
try:
backup_and_copy_file(setup, filebase, 'torch_model.py')
except FileNotFoundError:
pass
try:
backup_and_copy_file(setup, filebase, 'predict.py')
except FileNotFoundError:
pass
try:
backup_and_copy_file(setup, filebase, 'predict_no_gp.py')
except FileNotFoundError:
pass
try:
backup_and_copy_file(setup, filebase, 'predict_monai.py')
except FileNotFoundError:
pass
try:
backup_and_copy_file(setup, filebase, 'label.py')
except FileNotFoundError:
pass
try:
backup_and_copy_file(setup, filebase, 'decode.py')
except FileNotFoundError:
pass
# create train folders
train_folder = os.path.join(filebase, 'train')
os.makedirs(train_folder, exist_ok=True)
os.makedirs(os.path.join(train_folder, 'snapshots'), exist_ok=True)
# create val folders
if args.validate_on_train:
val_folder = os.path.join(filebase, 'val_train')
else:
val_folder = os.path.join(filebase, 'val')
os.makedirs(val_folder, exist_ok=True)
os.makedirs(os.path.join(val_folder, 'processed'), exist_ok=True)
os.makedirs(os.path.join(val_folder, 'instanced'), exist_ok=True)
# create test folders
if args.test_on_train:
test_folder = os.path.join(filebase, 'test_train')
else:
test_folder = os.path.join(filebase, 'test')
os.makedirs(test_folder, exist_ok=True)
os.makedirs(os.path.join(test_folder, 'processed'), exist_ok=True)
os.makedirs(os.path.join(test_folder, 'instanced'), exist_ok=True)
return train_folder, val_folder, test_folder
def update_config(args, config):
if args.train_data is not None:
config['data']['train_data'] = args.train_data
if args.val_data is not None:
config['data']['val_data'] = args.val_data
if args.test_data is not None:
config['data']['test_data'] = args.test_data
if args.input_format is not None:
config['data']['input_format'] = args.input_format
if 'input_format' not in config['data']:
raise ValueError("Please provide data/input_format in cl or config")
if args.validate_on_train:
config['data']['validate_on_train'] = True
config['data']['val_data'] = config['data']['train_data']
else:
config['data']['validate_on_train'] = False
if args.test_on_train:
config['data']['test_on_train'] = True
config['data']['test_data'] = config['data']['train_data']
else:
config['data']['test_on_train'] = False
if args.vote_instances_cuda:
config['vote_instances']['cuda'] = True
if args.vote_instances_blockwise:
config['vote_instances']['blockwise'] = True
def setDebugValuesForConfig(config):
config['training']['max_iterations'] = 10
config['training']['checkpoints'] = 10
config['training']['snapshots'] = 10
config['training']['profiling'] = 10
config['training']['num_workers'] = 1
config['training']['cache_size'] = 1
@fork
@time_func
def mknet(args, config, train_folder, test_folder):
if args.run_from_exp:
mk_net_fn = runpy.run_path(
os.path.join(config['base'], 'mknet.py'))['mk_net']
mk_net_fn_train = mk_net_fn
else:
mk_net_fn = importlib.import_module(
args.app + '.02_setups.' + args.setup + '.mknet').mk_net
if args.batched:
mk_net_fn_train = importlib.import_module(
args.app + '.02_setups.' + args.setup + '.mknet_bs').mk_net
else:
mk_net_fn_train = mk_net_fn
mk_net_fn_train(name=config['model']['train_net_name'],
input_shape=config['model']['train_input_shape'],
output_folder=train_folder,
autoencoder=config.get('autoencoder'),
**config['data'],
**config['model'],
**config['optimizer'],
batch_size=config['training']['batch_size'],
debug=config['general']['debug'])
mk_net_fn(name=config['model']['test_net_name'],
input_shape=config['model']['test_input_shape'],
output_folder=test_folder,
autoencoder=config.get('autoencoder'),
**config['data'],
**config['model'],
**config['optimizer'],
batch_size=config['training']['batch_size'],
debug=config['general']['debug'])
# @fork
@time_func
def train(args, config, train_folder):
if 'CUDA_VISIBLE_DEVICES' not in os.environ:
raise RuntimeError("no free GPU available!")
data_files = get_list_train_files(config)
val_files = get_list_train_files(config, val=True)
if args.run_from_exp:
train_fn = runpy.run_path(
os.path.join(config['base'], 'train.py'))['train_until']
elif args.batched:
train_fn = importlib.import_module(
args.app + '.02_setups.' + args.setup + '.train_bs').train_until
else:
train_fn = importlib.import_module(
args.app + '.02_setups.' + args.setup + '.train').train_until
train_fn(name=config['model']['train_net_name'],
max_iteration=config['training']['max_iterations'],
output_folder=train_folder,
data_files=data_files,
val_files=val_files,
**config['data'],
**config['model'],
**config['training'],
**config['optimizer'],
**config.get('preprocessing', {}))
def get_list_train_files(config, val=False):
if val:
data = config['data']['val_data']
else:
data = config['data']['train_data']
if os.path.isfile(data):
files = [data]
elif os.path.isdir(data):
if 'folds' in config['training']:
files = glob(os.path.join(
data + "_folds" + config['training']['folds'],
"*." + config['data']['input_format']))
elif config['data'].get('sub_folders', False):
files = glob(os.path.join(
data, "*", "*." + config['data']['input_format']))
else:
files = glob(os.path.join(data,
"*." + config['data']['input_format']))
else:
raise ValueError(
"please provide file or directory for data/train_data", data)
return files
def get_list_samples(config, data, file_format, filter=None):
logger.info("reading data from %s", data)
# read data
if os.path.isfile(data):
if file_format == ".hdf" or file_format == "hdf":
with h5py.File(data, 'r') as f:
samples = [k for k in f]
else:
NotImplementedError("Add reader for %s format",
os.path.splitext(data)[1])
elif data.endswith('.zarr'):
samples = [os.path.basename(data).split(".")[0]]
elif os.path.isdir(data):
samples = fnmatch.filter(os.listdir(data),
'*.' + file_format)
samples = [os.path.splitext(s)[0] for s in samples]
if not samples:
for d in os.listdir(data):
tmp = fnmatch.filter(os.listdir(os.path.join(data, d)),
'*.' + file_format)
tmp = [os.path.join(d, os.path.splitext(s)[0]) for s in tmp]
samples += tmp
else:
raise NotImplementedError("Data must be file or directory")
logger.debug(samples)
# read filter list
if filter is not None:
if os.path.isfile(filter):
if filter.endswith(".hdf"):
with h5py.File(filter, 'r') as f:
filter_list = [k for k in f]
else:
NotImplementedError("Add reader for %s format",
os.path.splitext(data)[1])
elif filter.endswith('.zarr'):
filter_list = [os.path.basename(filter).split(".")[0]]
elif os.path.isdir(filter):
filter_list = fnmatch.filter(os.listdir(filter), '*')
filter_list = [os.path.splitext(s)[0] for s in filter_list]
if not filter_list:
for d in os.listdir(filter):
tmp = fnmatch.filter(os.listdir(os.path.join(filter, d)),
'*.' + file_format)
tmp = [os.path.join(d, os.path.splitext(s)[0]) for s in tmp]
filter_list += tmp
else:
raise NotImplementedError("Data must be file or directory")
print(filter_list[:5])
samples = [s for s in samples if s in filter_list]
print(samples[:5])
return samples
@fork
@time_func
def predict_sample(args, config, name, data, sample, checkpoint, input_folder,
output_folder):
if 'CUDA_VISIBLE_DEVICES' not in os.environ:
raise RuntimeError("no free GPU available!")
if args.run_from_exp:
predict_fn = runpy.run_path(
os.path.join(config['base'], 'predict.py'))['predict']
else:
predict_fn = importlib.import_module(
args.app + '.02_setups.' + args.setup + '.predict').predict
logger.info('predicting %s!', sample)
predict_fn(name=name, sample=sample, checkpoint=checkpoint,
data_folder=data, input_folder=input_folder,
output_folder=output_folder,
**config['data'],
**config['model'],
**config.get('preprocessing', {}),
**config['prediction'])
@fork
@time_func
def predict_autoencoder(args, config, data, checkpoint, train_folder,
output_folder):
import tensorflow as tf
if args.run_from_exp:
eval_predict_fn = runpy.run_path(
os.path.join(config['base'], 'eval_predict.py'))['run']
else:
eval_predict_fn = importlib.import_module(
args.app + '.02_setups.' + args.setup + '.eval_predict').run
input_shape = tuple(p for p in config['model']['patchshape'] if p > 1)
checkpoint_file = get_checkpoint_file(checkpoint,
config['model']['train_net_name'],
train_folder)
samples = get_list_samples(config, data, config['data']['input_format'])
if not os.path.isfile(data):
for idx, s in enumerate(samples):
samples[idx] = os.path.join(data,
s + "." + config['data']['input_format'])
eval_predict_fn(mode=tf.estimator.ModeKeys.PREDICT,
input_shape=input_shape,
max_samples=32,
checkpoint_file=checkpoint_file,
output_folder=output_folder,
samples=samples,
**config['model'],
**config['data'],
**config['prediction'],
**config['visualize'])
@fork
@time_func
def predict_no_gp(args, config, name, data, samples, checkpoint, input_folder,
output_folder):
if 'CUDA_VISIBLE_DEVICES' not in os.environ:
raise RuntimeError("no free GPU available!")
logger.info('predicting!')
if args.no_gp_predict:
if args.run_from_exp:
predict_fn = runpy.run_path(
os.path.join(config['base'], 'predict_no_gp.py'))['predict']
else:
predict_fn = importlib.import_module(
args.app + '.02_setups.' + args.setup + '.predict_no_gp').predict
else:
if args.run_from_exp:
predict_fn = runpy.run_path(
os.path.join(config['base'], 'predict_monai.py'))['predict']
else:
predict_fn = importlib.import_module(
args.app + '.02_setups.' + args.setup + '.predict_monai').predict
predict_fn(name=name, samples=samples, checkpoint=checkpoint,
data_folder=data, input_folder=input_folder,
output_folder=output_folder,
**config['data'],
**config['model'],
batch_size=config['training']['batch_size'],
**config.get('preprocessing', {}),
**config['prediction'])
@time_func
def predict(args, config, name, data, checkpoint, test_folder, output_folder):
if data.endswith("npy"):
samples = [data]
else:
samples = get_list_samples(config, data, config['data']['input_format'])
if config["data"].get("add_partly_val", False):
samples += get_list_samples(
config, data.replace("complete", "partly"),
config["data"]["input_format"]
)
if args.sample is not None:
samples = [s for s in samples if args.sample in s]
samplesT = []
for idx, sample in enumerate(samples):
fl = os.path.join(output_folder,
sample + '.' + config['prediction']['output_format'])
if not config['general']['overwrite'] and os.path.exists(fl):
key = ('aff_key'
if not (config['training'].get('train_code') or
config['model'].get('train_code'))
else 'code_key')
if check_file(
fl, remove_on_error=False,
key=config['prediction'].get(key, "volumes/pred_affs")):
logger.info('Skipping prediction for %s. Already exists!',
sample)
if args.predict_single:
break
else:
continue
else:
logger.info('prediction %s broken. recomputing..!',
sample)
samplesT.append(sample)
samples = samplesT
if (args.no_gp_predict or args.predict_monai) and samples:
predict_no_gp(args, config, name, data, samples, checkpoint,
test_folder, output_folder)
return
for idx, sample in enumerate(samples):
print("predicting with output %s" % os.path.join(
output_folder,
sample + '.' + config['prediction']['output_format']))
if args.debug_args and idx >= 2:
break
predict_sample(args, config, name, data, sample, checkpoint,
test_folder, output_folder)
if args.predict_single:
break
@fork
@time_func
def decode(args, config, data, checkpoint, pred_folder, output_folder):
in_format = config['prediction']['output_format']
# samples = get_list_samples(config, pred_folder, in_format, data)
samples = get_list_samples(config, pred_folder, in_format)
if args.sample is not None:
samples = [s for s in samples if args.sample in s]
to_be_skipped = []
for sample in samples:
pred_file = os.path.join(output_folder, sample + '.' + in_format)
if not config['general']['overwrite'] and os.path.exists(pred_file):
if check_file(pred_file, remove_on_error=False,
key=config['prediction'].get('aff_key',
"volumes/pred_affs")):
logger.info('Skipping decoding for %s. Already exists!', sample)
to_be_skipped.append(sample)
for sample in to_be_skipped:
samples.remove(sample)
if len(samples) == 0:
return
logger.info("Decoding still to be done for: %s", samples)
if 'CUDA_VISIBLE_DEVICES' not in os.environ:
raise RuntimeError("no free GPU available!")
try:
import tensorflow as tf
mode = tf.estimator.ModeKeys.PREDICT
except:
logger.info(
"unable to \"import tensorflow\" in def decode, "
"this is ok as long as pytorch is used anyway.")
mode = None
for idx, s in enumerate(samples):
samples[idx] = os.path.join(pred_folder, s + "." + in_format)
if args.run_from_exp:
decode_fn = runpy.run_path(
os.path.join(config['base'], 'decode.py'))['decode']
else:
decode_fn = importlib.import_module(
args.app + '.02_setups.' + args.setup + '.decode').decode
if config['model'].get('code_units'):
input_shape = (config['model'].get('code_units'),)
else:
input_shape = None
decode_fn(
mode=mode,
input_shape=input_shape,
checkpoint_file=checkpoint,
output_folder=output_folder,
samples=samples,
included_ae_config=config.get('autoencoder'),
**config['model'],
**config['prediction'],
**config['visualize'],
**config['data'],
batch_size=config['training']['batch_size'],
num_parallel_samples=config['vote_instances']['num_parallel_samples']
)
def get_checkpoint_file(iteration, name, train_folder):
return os.path.join(train_folder, name + '_checkpoint_%d' % iteration)
def get_checkpoint_list(name, train_folder):
checkpoints = natsorted(glob(
os.path.join(train_folder, name + '_checkpoint_*.index')))
return [int(os.path.splitext(os.path.basename(cp))[0].split("_")[-1])
for cp in checkpoints]
def select_validation_data(config, train_folder, val_folder):
if config['data'].get('validate_on_train'):
if 'folds' in config['training']:
data = config['data']['train_data'] + \
"_folds" + str(config['training']['folds'])
else:
data = config['data']['train_data']
output_folder = train_folder
else:
if 'fold' in config['validation']:
data = config['data']['val_data'] + \
"_fold" + str(config['validation']['fold'])
else:
data = config['data']['val_data']
output_folder = val_folder
return data, output_folder
@time_func
def validate_checkpoint(args, config, data, checkpoint, params, train_folder,
test_folder, output_folder):
logger.info("validating checkpoint %d %s", checkpoint, params)
# create test iteration folders
params_str = [k + "_" + str(v).replace(".", "_").replace(
" ", "").replace(",", "_").replace("[", "_").replace(
"]", "_").replace("(", "_").replace(")", "_")
for k, v in params.items()]
pred_folder = os.path.join(output_folder, 'processed', str(checkpoint))
inst_folder = os.path.join(output_folder, 'instanced', str(checkpoint),
*params_str)
eval_folder = os.path.join(output_folder, 'evaluated', str(checkpoint),
*params_str)
os.makedirs(pred_folder, exist_ok=True)
os.makedirs(inst_folder, exist_ok=True)
os.makedirs(eval_folder, exist_ok=True)
# predict val data
checkpoint_file = get_checkpoint_file(checkpoint,
config['model']['train_net_name'],
train_folder)
logger.info("predicting checkpoint %d", checkpoint)
# predict and evaluate autoencoder separately
if args.app == "autoencoder":
metric = evaluate_autoencoder(args, config,
config['data']['test_data'],
checkpoint, train_folder, eval_folder)
logger.info("%s checkpoint %6d: %.4f (%s)",
config['evaluation']['metric'], checkpoint, metric, params)
return metric
# predict other apps
if not args.skip_predict:
predict(args, config, config['model']['test_net_name'], data,
checkpoint_file, test_folder, pred_folder)
# if ppp learns code
if config['training'].get('train_code') or \
config['model'].get('train_code'):
autoencoder_chkpt = config['model']['autoencoder_chkpt']
if autoencoder_chkpt == "this":
autoencoder_chkpt = checkpoint_file
decode(args, config, data, autoencoder_chkpt, pred_folder, pred_folder)
if args.only_predict_decode:
return None
if config['evaluation'].get('prediction_only'):
eval_folder = os.path.join(output_folder, "evaluated", str(checkpoint))
logger.info("evaluating prediction checkpoint %d", checkpoint)
return evaluate_prediction(
args, config, data, pred_folder, eval_folder)
# vote instances
logger.info("vote_instances checkpoint %d %s", checkpoint, params)
vote_instances(args, config, data, pred_folder, inst_folder)
if args.term_after_patch_graph:
exit(0)
# evaluate
if not args.skip_evaluate:
logger.info("evaluating checkpoint %d %s", checkpoint, params)
metric = evaluate(args, config, data, inst_folder, eval_folder)
logger.info("%s checkpoint %6d: " + ("%s" if isinstance(metric, dict) else "%.4f") + " (%s)",
config['evaluation']['metric'], checkpoint, metric, params)
else:
metric = None
return metric
def get_postprocessing_params(config, params_product_list,
params_zip_list, test_config):
params_product = {}
for p in params_product_list:
if config is None or config[p] == []:
params_product[p] = [test_config[p]]
else:
params_product[p] = config[p]
params_zip = {}
for p in params_zip_list:
if config is None or config[p] == []:
params_zip[p] = [test_config[p]]
else:
params_zip[p] = config[p]
return params_zip, params_product
def named_product(**items):
if items:
names = items.keys()
vals = items.values()
for res in itertools.product(*vals):
yield dict(zip(names, res))
else:
yield {}
def named_zip(**items):
if items:
names = items.keys()
vals = items.values()
for res in zip(*vals):
yield dict(zip(names, res))
else:
yield {}
def named_params(params_zip, params_product):
logger.info("zip params %s", params_zip)
logger.info("product params %s", params_product)
if not params_product and params_zip:
yield from named_zip(**params_zip)
elif params_product and not params_zip:
yield from named_product(**params_product)
elif params_product and params_zip:
names_product = params_product.keys()
vals_product = params_product.values()
names_zip = params_zip.keys()
vals_zip = params_zip.values()
for res in zip(*vals_zip):
param_zip = dict(zip(names_zip, res))
logger.info("%s", param_zip)
for res in itertools.product(*vals_product):
param_product = dict(zip(names_product, res))
logger.info("%s", param_product)
param_zip_tmp = deepcopy(param_zip)
yield merge_dicts(param_zip_tmp, param_product)
else:
yield {}
def validate_checkpoints(args, config, data, checkpoints, train_folder,
test_folder, output_folder):
# validate all checkpoints and return best one
metrics = []
ckpts = []
params = []
results = []
if config['evaluation'].get('prediction_only'):
for checkpoint in checkpoints:
param_set = {}
metric, ths = validate_checkpoint(args, config, data,
checkpoint, param_set,
train_folder, test_folder,
output_folder)
metrics.append(metric)
for idx, checkpoint in enumerate(checkpoints):
logger.info("%s checkpoint %6d:",
config['evaluation']['metric'], checkpoint)
logger.info("%s (%s)", metrics[idx], ths)
logger.info("best: %.4f at threshold %s",
np.max(metrics[idx]), ths[np.argmax(metrics[idx])])
return None, None
else:
param_sets = list(named_params(
*get_postprocessing_params(
config['validation'],
config['validation'].get(
'params_product',
config['validation'].get('params', [])),
config['validation'].get('params_zip', []),
config['vote_instances']
)))
logger.info("val params %s", param_sets)
for checkpoint in checkpoints:
logger.info("validating checkpoint %s", checkpoint)
for idx, param_set in enumerate(param_sets):
if args.val_id >= 0 and args.val_id != idx:
continue
val_config = deepcopy(config)
for k in param_set.keys():
val_config['vote_instances'][k] = param_set[k]
if 'filterSzs' in config['validation']:
filterSzs = config['validation']['filterSzs']
elif 'filterSz' in config['evaluation']:
filterSzs = [config['evaluation']['filterSz']]
else:
filterSzs = [None]
if 'res_keys' in config['validation']:
res_keys = config['validation']['res_keys']
else:
res_keys = [config['evaluation']['res_key']]
eval_params = list(named_product(filterSz=filterSzs,
res_key=res_keys))
for eval_param in eval_params:
logger.info("eval params %s", eval_param)
val_config['evaluation']['res_key'] = eval_param['res_key']
val_config['evaluation']['filterSz'] = eval_param['filterSz']
metric = validate_checkpoint(
args, val_config, data, checkpoint,
param_set, train_folder, test_folder,
output_folder)
metrics.append(metric)
ckpts.append(checkpoint)
tmp_param_set = deepcopy(param_set)
tmp_param_set['filterSz'] = eval_param['filterSz']
tmp_param_set['res_key'] = eval_param['res_key']
params.append(tmp_param_set)
results.append({'checkpoint': checkpoint,
'metric': str(metric),
'params': tmp_param_set})
if metric is None:
continue
logger.info("%s checkpoint %6d: " +
("%s" if isinstance(metric, dict) else "%.4f") +
" (%s)",
config['evaluation']['metric'], checkpoint,
metric, tmp_param_set)
if args.only_predict_decode:
return None, None
if val_config['evaluation'].get('prediction_only'):
config['evaluation']['metric'] = '1_f1'
for ch, metric, p in zip(ckpts, metrics, params):
logger.info("%s checkpoint %6d: " +
("%s" if isinstance(metric, dict) else "%.4f") + " (%s)",
config['evaluation']['metric'], ch, np.mean(metric), p)
if config['general']['debug'] and None in metrics:
logger.error("None in checkpoint found: %s (continuing with last)",
tuple(metrics))