-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlogger.py
807 lines (665 loc) · 25.1 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
import datetime
import json
import os
import sys
import tempfile
import warnings
from collections import defaultdict
from io import TextIOBase
from typing import Any, Dict, List, Mapping, Optional, Sequence, TextIO, Tuple, Union
import matplotlib.figure
import numpy as np
import pandas
import torch as th
try:
from torch.utils.tensorboard import SummaryWriter
from torch.utils.tensorboard.summary import hparams
except ImportError:
SummaryWriter = None # type: ignore[misc, assignment]
try:
from tqdm import tqdm
except ImportError:
tqdm = None
DEBUG = 10
INFO = 20
WARN = 30
ERROR = 40
DISABLED = 50
class Video:
"""
Video data class storing the video frames and the frame per seconds
:param frames: frames to create the video from
:param fps: frames per second
"""
def __init__(self, frames: th.Tensor, fps: float):
self.frames = frames
self.fps = fps
class Figure:
"""
Figure data class storing a matplotlib figure and whether to close the figure after logging it
:param figure: figure to log
:param close: if true, close the figure after logging it
"""
def __init__(self, figure: matplotlib.figure.Figure, close: bool):
self.figure = figure
self.close = close
class Image:
"""
Image data class storing an image and data format
:param image: image to log
:param dataformats: Image data format specification of the form NCHW, NHWC, CHW, HWC, HW, WH, etc.
More info in add_image method doc at https://pytorch.org/docs/stable/tensorboard.html
Gym envs normally use 'HWC' (channel last)
"""
def __init__(
self, image: Union[th.Tensor, np.ndarray, str], dataformats: str
):
self.image = image
self.dataformats = dataformats
class HParam:
"""
Hyperparameter data class storing hyperparameters and metrics in dictionaries
:param hparam_dict: key-value pairs of hyperparameters to log
:param metric_dict: key-value pairs of metrics to log
A non-empty metrics dict is required to display hyperparameters in the corresponding Tensorboard section.
"""
def __init__(
self,
hparam_dict: Mapping[str, Union[bool, str, float, None]],
metric_dict: Mapping[str, float],
):
self.hparam_dict = hparam_dict
if not metric_dict:
raise Exception(
"`metric_dict` must not be empty to display hyperparameters to the HPARAMS tensorboard tab."
)
self.metric_dict = metric_dict
class FormatUnsupportedError(NotImplementedError):
"""
Custom error to display informative message when
a value is not supported by some formats.
:param unsupported_formats: A sequence of unsupported formats,
for instance ``["stdout"]``.
:param value_description: Description of the value that cannot be logged by this format.
"""
def __init__(
self, unsupported_formats: Sequence[str], value_description: str
):
if len(unsupported_formats) > 1:
format_str = f"formats {', '.join(unsupported_formats)} are"
else:
format_str = f"format {unsupported_formats[0]} is"
super().__init__(
f"The {format_str} not supported for the {value_description} value logged.\n"
f"You can exclude formats via the `exclude` parameter of the logger's `record` function."
)
class KVWriter:
"""
Key Value writer
"""
def write(
self,
key_values: Dict[str, Any],
key_excluded: Dict[str, Tuple[str, ...]],
step: int = 0,
) -> None:
"""
Write a dictionary to file
:param key_values:
:param key_excluded:
:param step:
"""
raise NotImplementedError
def close(self) -> None:
"""
Close owned resources
"""
raise NotImplementedError
class SeqWriter:
"""
sequence writer
"""
def write_sequence(self, sequence: List[str]) -> None:
"""
write_sequence an array to file
:param sequence:
"""
raise NotImplementedError
class HumanOutputFormat(KVWriter, SeqWriter):
"""A human-readable output format producing ASCII tables of key-value pairs.
Set attribute ``max_length`` to change the maximum length of keys and values
to write to output (or specify it when calling ``__init__``).
:param filename_or_file: the file to write the log to
:param max_length: the maximum length of keys and values to write to output.
Outputs longer than this will be truncated. An error will be raised
if multiple keys are truncated to the same value. The maximum output
width will be ``2*max_length + 7``. The default of 36 produces output
no longer than 79 characters wide.
"""
def __init__(
self, filename_or_file: Union[str, TextIO], max_length: int = 36
):
self.max_length = max_length
if isinstance(filename_or_file, str):
self.file = open(filename_or_file, "w")
self.own_file = True
elif isinstance(filename_or_file, TextIOBase) or hasattr(
filename_or_file, "write"
):
# Note: in theory `TextIOBase` check should be sufficient,
# in practice, libraries don't always inherit from it, see GH#1598
self.file = filename_or_file # type: ignore[assignment]
self.own_file = False
else:
raise ValueError(f"Expected file or str, got {filename_or_file}")
def write(
self,
key_values: Dict[str, Any],
key_excluded: Dict[str, Tuple[str, ...]],
step: int = 0,
) -> None:
# Create strings for printing
key2str = {}
tag = ""
for (key, value), (_, excluded) in zip(
sorted(key_values.items()), sorted(key_excluded.items())
):
if excluded is not None and (
"stdout" in excluded or "log" in excluded
):
continue
elif isinstance(value, Video):
raise FormatUnsupportedError(["stdout", "log"], "video")
elif isinstance(value, Figure):
raise FormatUnsupportedError(["stdout", "log"], "figure")
elif isinstance(value, Image):
raise FormatUnsupportedError(["stdout", "log"], "image")
elif isinstance(value, HParam):
raise FormatUnsupportedError(["stdout", "log"], "hparam")
elif isinstance(value, float):
# Align left
value_str = f"{value:<8.3g}"
else:
value_str = str(value)
if key.find("/") > 0: # Find tag and add it to the dict
tag = key[: key.find("/") + 1]
key2str[(tag, self._truncate(tag))] = ""
# Remove tag from key and indent the key
if len(tag) > 0 and tag in key:
key = f"{'':3}{key[len(tag) :]}"
truncated_key = self._truncate(key)
if (tag, truncated_key) in key2str:
raise ValueError(
f"Key '{key}' truncated to '{truncated_key}' that already exists. Consider increasing `max_length`."
)
key2str[(tag, truncated_key)] = self._truncate(value_str)
# Find max widths
if len(key2str) == 0:
warnings.warn("Tried to write empty key-value dict")
return
else:
tagless_keys = map(lambda x: x[1], key2str.keys())
key_width = max(map(len, tagless_keys))
val_width = max(map(len, key2str.values()))
# Write out the data
dashes = "-" * (key_width + val_width + 7)
lines = [dashes]
for (_, key), value in key2str.items():
key_space = " " * (key_width - len(key))
val_space = " " * (val_width - len(value))
lines.append(f"| {key}{key_space} | {value}{val_space} |")
lines.append(dashes)
# MODIFIED: Suppress the print statements
# if tqdm is not None and hasattr(self.file, "name") and self.file.name == "<stdout>":
# # Do not mess up with progress bar
# tqdm.write("\n".join(lines) + "\n", file=sys.stdout, end="")
# else:
# self.file.write("\n".join(lines) + "\n")
# # Flush the output to the file
# self.file.flush()
def _truncate(self, string: str) -> str:
if len(string) > self.max_length:
string = string[: self.max_length - 3] + "..."
return string
def write_sequence(self, sequence: List[str]) -> None:
for i, elem in enumerate(sequence):
self.file.write(elem)
if i < len(sequence) - 1: # add space unless this is the last one
self.file.write(" ")
self.file.write("\n")
self.file.flush()
def close(self) -> None:
"""
closes the file
"""
if self.own_file:
self.file.close()
def filter_excluded_keys(
key_values: Dict[str, Any],
key_excluded: Dict[str, Tuple[str, ...]],
_format: str,
) -> Dict[str, Any]:
"""
Filters the keys specified by ``key_exclude`` for the specified format
:param key_values: log dictionary to be filtered
:param key_excluded: keys to be excluded per format
:param _format: format for which this filter is run
:return: dict without the excluded keys
"""
def is_excluded(key: str) -> bool:
return (
key in key_excluded
and key_excluded[key] is not None
and _format in key_excluded[key]
)
return {
key: value for key, value in key_values.items() if not is_excluded(key)
}
class JSONOutputFormat(KVWriter):
"""
Log to a file, in the JSON format
:param filename: the file to write the log to
"""
def __init__(self, filename: str):
self.file = open(filename, "w")
def write(
self,
key_values: Dict[str, Any],
key_excluded: Dict[str, Tuple[str, ...]],
step: int = 0,
) -> None:
def cast_to_json_serializable(value: Any):
if isinstance(value, Video):
raise FormatUnsupportedError(["json"], "video")
if isinstance(value, Figure):
raise FormatUnsupportedError(["json"], "figure")
if isinstance(value, Image):
raise FormatUnsupportedError(["json"], "image")
if isinstance(value, HParam):
raise FormatUnsupportedError(["json"], "hparam")
if hasattr(value, "dtype"):
if value.shape == () or len(value) == 1:
# if value is a dimensionless numpy array or of length 1, serialize as a float
return float(value.item())
else:
# otherwise, a value is a numpy array, serialize as a list or nested lists
return value.tolist()
return value
key_values = {
key: cast_to_json_serializable(value)
for key, value in filter_excluded_keys(
key_values, key_excluded, "json"
).items()
}
self.file.write(json.dumps(key_values) + "\n")
self.file.flush()
def close(self) -> None:
"""
closes the file
"""
self.file.close()
class CSVOutputFormat(KVWriter):
"""
Log to a file, in a CSV format
:param filename: the file to write the log to
"""
def __init__(self, filename: str):
self.file = open(filename, "w+t")
self.keys: List[str] = []
self.separator = ","
self.quotechar = '"'
def write(
self,
key_values: Dict[str, Any],
key_excluded: Dict[str, Tuple[str, ...]],
step: int = 0,
) -> None:
# Add our current row to the history
key_values = filter_excluded_keys(key_values, key_excluded, "csv")
extra_keys = key_values.keys() - self.keys
if extra_keys:
self.keys.extend(extra_keys)
self.file.seek(0)
lines = self.file.readlines()
self.file.seek(0)
for i, key in enumerate(self.keys):
if i > 0:
self.file.write(",")
self.file.write(key)
self.file.write("\n")
for line in lines[1:]:
self.file.write(line[:-1])
self.file.write(self.separator * len(extra_keys))
self.file.write("\n")
for i, key in enumerate(self.keys):
if i > 0:
self.file.write(",")
value = key_values.get(key)
if isinstance(value, Video):
raise FormatUnsupportedError(["csv"], "video")
elif isinstance(value, Figure):
raise FormatUnsupportedError(["csv"], "figure")
elif isinstance(value, Image):
raise FormatUnsupportedError(["csv"], "image")
elif isinstance(value, HParam):
raise FormatUnsupportedError(["csv"], "hparam")
elif isinstance(value, str):
# escape quotechars by prepending them with another quotechar
value = value.replace(
self.quotechar, self.quotechar + self.quotechar
)
# additionally wrap text with quotechars so that any delimiters in the text are ignored by csv readers
self.file.write(self.quotechar + value + self.quotechar)
elif value is not None:
self.file.write(str(value))
self.file.write("\n")
self.file.flush()
def close(self) -> None:
"""
closes the file
"""
self.file.close()
class TensorBoardOutputFormat(KVWriter):
"""
Dumps key/value pairs into TensorBoard's numeric format.
:param folder: the folder to write the log to
"""
def __init__(self, folder: str):
assert (
SummaryWriter is not None
), "tensorboard is not installed, you can use `pip install tensorboard` to do so"
self.writer = SummaryWriter(log_dir=folder)
self._is_closed = False
def write(
self,
key_values: Dict[str, Any],
key_excluded: Dict[str, Tuple[str, ...]],
step: int = 0,
) -> None:
assert (
not self._is_closed
), "The SummaryWriter was closed, please re-create one."
for (key, value), (_, excluded) in zip(
sorted(key_values.items()), sorted(key_excluded.items())
):
if excluded is not None and "tensorboard" in excluded:
continue
if isinstance(value, np.ScalarType):
if isinstance(value, str):
# str is considered a np.ScalarType
self.writer.add_text(key, value, step)
else:
self.writer.add_scalar(key, value, step)
if isinstance(value, th.Tensor):
self.writer.add_histogram(key, value, step)
if isinstance(value, Video):
self.writer.add_video(key, value.frames, step, value.fps)
if isinstance(value, Figure):
self.writer.add_figure(
key, value.figure, step, close=value.close
)
if isinstance(value, Image):
self.writer.add_image(
key, value.image, step, dataformats=value.dataformats
)
if isinstance(value, HParam):
# we don't use `self.writer.add_hparams` to have control over the log_dir
experiment, session_start_info, session_end_info = hparams(
value.hparam_dict, metric_dict=value.metric_dict
)
self.writer.file_writer.add_summary(experiment)
self.writer.file_writer.add_summary(session_start_info)
self.writer.file_writer.add_summary(session_end_info)
# Flush the output to the file
self.writer.flush()
def close(self) -> None:
"""
closes the file
"""
if self.writer:
self.writer.close()
self._is_closed = True
def make_output_format(
_format: str, log_dir: str, log_suffix: str = ""
) -> KVWriter:
"""
return a logger for the requested format
:param _format: the requested format to log to ('stdout', 'log', 'json' or 'csv' or 'tensorboard')
:param log_dir: the logging directory
:param log_suffix: the suffix for the log file
:return: the logger
"""
os.makedirs(log_dir, exist_ok=True)
if _format == "stdout":
return HumanOutputFormat(sys.stdout)
elif _format == "log":
return HumanOutputFormat(os.path.join(log_dir, f"log{log_suffix}.txt"))
elif _format == "json":
return JSONOutputFormat(
os.path.join(log_dir, f"progress{log_suffix}.json")
)
elif _format == "csv":
return CSVOutputFormat(
os.path.join(log_dir, f"progress{log_suffix}.csv")
)
elif _format == "tensorboard":
return TensorBoardOutputFormat(log_dir)
else:
raise ValueError(f"Unknown format specified: {_format}")
# ================================================================
# Backend
# ================================================================
class Logger:
"""
The logger class.
:param folder: the logging location
:param output_formats: the list of output formats
"""
def __init__(self, folder: Optional[str], output_formats: List[KVWriter]):
self.name_to_value: Dict[str, float] = defaultdict(
float
) # values this iteration
self.name_to_count: Dict[str, int] = defaultdict(int)
self.name_to_excluded: Dict[str, Tuple[str, ...]] = {}
self.level = INFO
self.dir = folder
self.output_formats = output_formats
# MODIFIED:
self.stats = {}
@staticmethod
def to_tuple(
string_or_tuple: Optional[Union[str, Tuple[str, ...]]]
) -> Tuple[str, ...]:
"""
Helper function to convert str to tuple of str.
"""
if string_or_tuple is None:
return ("",)
if isinstance(string_or_tuple, tuple):
return string_or_tuple
return (string_or_tuple,)
def record(
self,
key: str,
value: Any,
exclude: Optional[Union[str, Tuple[str, ...]]] = None,
) -> None:
"""
Log a value of some diagnostic
Call this once for each diagnostic quantity, each iteration
If called many times, last value will be used.
:param key: save to log this key
:param value: save to log this value
:param exclude: outputs to be excluded
"""
self.name_to_value[key] = value
self.name_to_excluded[key] = self.to_tuple(exclude)
def record_mean(
self,
key: str,
value: Optional[float],
exclude: Optional[Union[str, Tuple[str, ...]]] = None,
) -> None:
"""
The same as record(), but if called many times, values averaged.
:param key: save to log this key
:param value: save to log this value
:param exclude: outputs to be excluded
"""
if value is None:
return
old_val, count = self.name_to_value[key], self.name_to_count[key]
self.name_to_value[key] = old_val * count / (count + 1) + value / (
count + 1
)
self.name_to_count[key] = count + 1
self.name_to_excluded[key] = self.to_tuple(exclude)
def dump(self, step: int = 0) -> None:
"""
Write all of the diagnostics from the current iteration
"""
if self.level == DISABLED:
return
for _format in self.output_formats:
if isinstance(_format, KVWriter):
_format.write(self.name_to_value, self.name_to_excluded, step)
# MODIFIED: Save stats
keys = list(self.name_to_value.keys())
if keys[0].startswith("mean"):
values = list(self.name_to_value.values())
for i in range(len(self.name_to_value)):
if keys[i] not in self.stats:
self.stats[keys[i]] = []
self.stats[keys[i]].append(values[i])
self.name_to_value.clear()
self.name_to_count.clear()
self.name_to_excluded.clear()
def log(self, *args, level: int = INFO) -> None:
"""
Write the sequence of args, with no separators,
to the console and output files (if you've configured an output file).
level: int. (see logger.py docs) If the global logger level is higher than
the level argument here, don't print to stdout.
:param args: log the arguments
:param level: the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50)
"""
if self.level <= level:
self._do_log(args)
def debug(self, *args) -> None:
"""
Write the sequence of args, with no separators,
to the console and output files (if you've configured an output file).
Using the DEBUG level.
:param args: log the arguments
"""
self.log(*args, level=DEBUG)
def info(self, *args) -> None:
"""
Write the sequence of args, with no separators,
to the console and output files (if you've configured an output file).
Using the INFO level.
:param args: log the arguments
"""
self.log(*args, level=INFO)
def warn(self, *args) -> None:
"""
Write the sequence of args, with no separators,
to the console and output files (if you've configured an output file).
Using the WARN level.
:param args: log the arguments
"""
self.log(*args, level=WARN)
def error(self, *args) -> None:
"""
Write the sequence of args, with no separators,
to the console and output files (if you've configured an output file).
Using the ERROR level.
:param args: log the arguments
"""
self.log(*args, level=ERROR)
# Configuration
# ----------------------------------------
def set_level(self, level: int) -> None:
"""
Set logging threshold on current logger.
:param level: the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50)
"""
self.level = level
def get_dir(self) -> Optional[str]:
"""
Get directory that log files are being written to.
will be None if there is no output directory (i.e., if you didn't call start)
:return: the logging directory
"""
return self.dir
def close(self) -> None:
"""
closes the file
"""
for _format in self.output_formats:
_format.close()
# Misc
# ----------------------------------------
def _do_log(self, args: Tuple[Any, ...]) -> None:
"""
log to the requested format outputs
:param args: the arguments to log
"""
for _format in self.output_formats:
if isinstance(_format, SeqWriter):
_format.write_sequence(list(map(str, args)))
def configure(
folder: Optional[str] = None, format_strings: Optional[List[str]] = None
) -> Logger:
"""
Configure the current logger.
:param folder: the save location
(if None, $SB3_LOGDIR, if still None, tempdir/SB3-[date & time])
:param format_strings: the output logging format
(if None, $SB3_LOG_FORMAT, if still None, ['stdout', 'log', 'csv'])
:return: The logger object.
"""
if folder is None:
folder = os.getenv("SB3_LOGDIR")
if folder is None:
folder = os.path.join(
tempfile.gettempdir(),
datetime.datetime.now().strftime("SB3-%Y-%m-%d-%H-%M-%S-%f"),
)
assert isinstance(folder, str)
os.makedirs(folder, exist_ok=True)
log_suffix = ""
if format_strings is None:
format_strings = os.getenv("SB3_LOG_FORMAT", "stdout,log,csv").split(
","
)
format_strings = list(filter(None, format_strings))
output_formats = [
make_output_format(f, folder, log_suffix) for f in format_strings
]
logger = Logger(folder=folder, output_formats=output_formats)
# Only print when some files will be saved
if len(format_strings) > 0 and format_strings != ["stdout"]:
logger.log(f"Logging to {folder}")
return logger
# ================================================================
# Readers
# ================================================================
def read_json(filename: str) -> pandas.DataFrame:
"""
read a json file using pandas
:param filename: the file path to read
:return: the data in the json
"""
data = []
with open(filename) as file_handler:
for line in file_handler:
data.append(json.loads(line))
return pandas.DataFrame(data)
def read_csv(filename: str) -> pandas.DataFrame:
"""
read a csv file using pandas
:param filename: the file path to read
:return: the data in the csv
"""
return pandas.read_csv(filename, index_col=None, comment="#")