-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrade_local.py
executable file
·185 lines (139 loc) · 5.7 KB
/
grade_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#!/usr/bin/env python3
"""
Do a local practice grading.
The score you recieve here is not an actual score,
but gives you an idea on how prepared you are to submit to the autograder.
"""
import json
import os
import sys
import pandas
import cse40.question
import cse40.assignment
import cse40.style
import cse40.utils
THIS_DIR = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
DATA_PATH = os.path.join(THIS_DIR, 'cia_world_factbook_2022.json')
class T1A(cse40.question.Question):
def score_question(self, submission, world_data):
result = submission.drop_sparse_columns(world_data, 0.50)
if (self.check_not_implemented(result)):
return
if (not isinstance(result, pandas.DataFrame)):
self.fail("Answer must be a DataFrame.")
return
self.full_credit()
class T1B(cse40.question.Question):
def score_question(self, submission, world_data):
result = submission.extract_numbers(world_data, ['Country', 'Export commodities'])
if (self.check_not_implemented(result)):
return
if (not isinstance(result, pandas.DataFrame)):
self.fail("Answer must be a DataFrame.")
return
self.full_credit()
class T1C(cse40.question.Question):
def score_question(self, submission, world_data):
result = submission.guess_types(world_data)
if (self.check_not_implemented(result)):
return
if (not isinstance(result, pandas.DataFrame)):
self.fail("Answer must be a DataFrame.")
return
self.full_credit()
class T2A(cse40.question.Question):
def score_question(self, submission, world_data):
frame = pandas.DataFrame({'Label': ['1', '2', '3', '4'], 'A': [1.0, 1.5, 2.0, 100.0]})
result = submission.find_outliers(frame, 1.0, 'Label')
if (self.check_not_implemented(result)):
return
if (not isinstance(result, dict)):
self.fail("Answer must be a dict.")
return
if (len(result) == 0):
self.fail("Could not find any outliers.")
return
key = list(result.keys())[0]
if (len(result[key]) == 0):
self.fail("Got an outlier list that is empty.")
return
if (not isinstance(result[key][0], tuple)):
self.fail("List values should be tuples.")
return
if (len(result[key][0]) != 2):
self.fail("List values should be tuples of length 2.")
return
self.full_credit()
class T2B(cse40.question.Question):
def score_question(self, submission, world_data):
columns = ['Unemployment rate 2019', 'Unemployment rate 2020', 'Unemployment rate 2021']
result = submission.merge_columns(world_data, columns, 'Recent Unemployment')
if (self.check_not_implemented(result)):
return
if (not isinstance(result, pandas.DataFrame)):
self.fail("Answer must be a DataFrame.")
return
self.full_credit()
class T3A(cse40.question.Question):
def score_question(self, submission, world_data):
result = submission.one_hot(world_data, 'Export commodities')
if (self.check_not_implemented(result)):
return
if (not isinstance(result, pandas.DataFrame)):
self.fail("Answer must be a DataFrame.")
return
if ((list(result.columns) == list(world_data.columns)) and (result == world_data)):
self.fail("Answer should be a NEW DataFrame.")
return
self.full_credit()
class T4A(cse40.question.Question):
def score_question(self, submission, world_data):
lhs = pandas.DataFrame({'ID': [0, 1, 2], 'A': [1, 2, 3]})
rhs = pandas.DataFrame({'B': [4, 5, 6]})
result = submission.left_join(lhs, rhs, ['ID'])
if (self.check_not_implemented(result)):
return
if (not isinstance(result, pandas.DataFrame)):
self.fail("Answer must be a DataFrame.")
return
if (((list(result.columns) == list(lhs.columns)) and (result == lhs))
or ((list(result.columns) == list(rhs.columns)) and (result == rhs))):
self.fail("Answer should be a NEW DataFrame.")
return
self.full_credit()
def grade(path):
submission = cse40.utils.prepare_submission(path)
with open(DATA_PATH, 'r') as file:
data = json.load(file)
world_data = pandas.DataFrame.from_dict(data, orient = 'index')
world_data.sort_index(axis = 0, inplace = True)
world_data.insert(0, 'Country', world_data.index)
world_data.reset_index(drop = True, inplace = True)
additional_data = {
'world_data': world_data,
}
questions = [
T1A("Task 1.A (drop_sparse_columns)", 1),
T1B("Task 1.B (extract_numbers)", 1),
T1C("Task 1.C (guess_types)", 1),
T2A("Task 2.A (find_outliers)", 1),
T2B("Task 2.B (merge_columns)", 1),
T3A("Task 3.A (one_hot)", 1),
T4A("Task 4.A (left_join)", 1),
cse40.style.Style(path, max_points = 1),
]
assignment = cse40.assignment.Assignment('Practice Grading for Hands-On 3', questions)
assignment.grade(submission, additional_data = additional_data)
return assignment
def main(path):
assignment = grade(path)
print(assignment.report())
def _load_args(args):
exe = args.pop(0)
if (len(args) != 1 or ({'h', 'help'} & {arg.lower().strip().replace('-', '') for arg in args})):
print("USAGE: python3 %s <submission path (.py or .ipynb)>" % (exe), file = sys.stderr)
sys.exit(1)
path = os.path.abspath(args.pop(0))
return path
if (__name__ == '__main__'):
main(_load_args(list(sys.argv)))