-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_fid.py
130 lines (113 loc) · 7.14 KB
/
train_fid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import time
import torch
import os
from options.train_options import TrainOptions
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from util import html
from util.visualizer import Visualizer, save_images
from pytorch_fid.fid_score import calculate_fid_given_paths
"""
This one measures the FID during training. You need to create validations sets.
We keep it here, but not recommended to use, since we have access to GT, metrics like PSNR/SSIM are better.
"""
if __name__ == '__main__':
opt = TrainOptions().parse() # get training options
val_opts = TestOptions().parse()
val_opts.phase = 'val'
val_opts.num_threads = 0 # test code only supports num_threads = 0
val_opts.batch_size = 1 # test code only supports batch_size = 1
val_opts.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
val_opts.no_flip = True # no flip; comment this line if results on flipped images are needed.
val_opts.display_id = -1
val_opts.aspect_ratio = 1.0
opt.val_metric_freq = 1
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
val_dataset = create_dataset(val_opts) # create a dataset given opt.dataset_mode and other options
web_dir = os.path.join(val_opts.results_dir, val_opts.name,
'{}_{}'.format(val_opts.phase, val_opts.epoch)) # define the website directory
print('creating web directory', web_dir)
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch))
dataset_size = len(dataset) # get the number of images in the dataset.
model = create_model(opt) # create a model given opt.model and other options
print('The number of training images = %d' % dataset_size)
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
opt.visualizer = visualizer
total_iters = 0 # the total number of training iterations
optimize_time = 0.1
times = []
for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch
dataset.set_epoch(epoch)
for i, data in enumerate(dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
batch_size = data["A"].size(0)
total_iters += batch_size
epoch_iter += batch_size
if len(opt.gpu_ids) > 0:
torch.cuda.synchronize()
optimize_start_time = time.time()
if epoch == opt.epoch_count and i == 0:
model.data_dependent_initialize(data)
model.setup(opt) # regular setup: load and print networks; create schedulers
model.parallelize()
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
if len(opt.gpu_ids) > 0:
torch.cuda.synchronize()
optimize_time = (time.time() - optimize_start_time) / batch_size * 0.005 + 0.995 * optimize_time
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
visualizer.print_current_losses(epoch, epoch_iter, losses, optimize_time, t_data)
if opt.display_id is None or opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
print(opt.name) # it's useful to occasionally show the experiment name on console
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))
if epoch % opt.val_metric_freq == 0:
print('Evaluating FID for validation set at epoch %d, iters %d, at dataset %s' % (
epoch, total_iters, opt.name))
model.eval()
for i, data in enumerate(val_dataset):
model.set_input(data) # unpack data from data loader
model.test() # run inference
visuals = model.get_current_visuals() # get image results
if opt.direction == 'BtoA':
visuals = {'fake_A': visuals['fake_A']}
suffix1 = 'fake_A'
suffix2 = 'valA'
else:
visuals = {'fake_B': visuals['fake_B']}
suffix1 = 'fake_B'
suffix2 = 'valB'
img_path = model.get_image_paths() # get image paths
if i % 50 == 0: # save images to an HTML file
print('processing (%04d)-th image... %s' % (i, img_path))
save_images(webpage, visuals, img_path, aspect_ratio=val_opts.aspect_ratio,
width=val_opts.display_winsize)
fid_value = calculate_fid_given_paths(
paths=(('./results/{d}/val_latest/images/'+suffix1).format(d=opt.name), ('{d}/'+suffix2).format(d=opt.dataroot)),
batch_size=50, cuda='0', dims=2048)
visualizer.print_current_fid(epoch, fid_value)
visualizer.plot_current_fid(epoch, fid_value)
print('End of epoch %d / %d \t Time Taken: %d sec' % (
epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))
model.update_learning_rate() # update learning rates at the end of every epoch.