-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_bert.py
220 lines (167 loc) · 7.04 KB
/
model_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#
# CSI 5386 Assignment 2
# Juliane Bruck 8297746
#
#
# Bert model uncased
#
import re
from datasets import Dataset
import pandas as pd
import evaluate
import numpy as np
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer, DataCollatorWithPadding, AutoTokenizer, set_seed
import os
from sklearn.model_selection import train_test_split
from scipy.special import softmax
import argparse
import logging
import json
from accelerate import DataLoaderConfiguration
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
#
# Cleaning step
#
def clean_sentence(sentence):
# Remove special characters, punctuation, and numbers
cleaned_sentence = re.sub(r'[^A-Za-z\s]', '', sentence)
# Convert to lowercase
cleaned_sentence = cleaned_sentence.lower()
# Remove extra whitespaces
cleaned_sentence = ' '.join(cleaned_sentence.split())
return cleaned_sentence
def preprocess_function(examples, **fn_kwargs):
cleaned_text = [clean_sentence(text) for text in examples["text"]]
return fn_kwargs['tokenizer'](cleaned_text, truncation=True, padding=True)
def get_data(train_path, test_path, random_seed):
"""
function to read dataframe with columns
"""
train_df = pd.read_json(train_path, lines=True)
test_df = pd.read_json(test_path, lines=True)
train_df, val_df = train_test_split(
train_df, test_size=0.2, stratify=train_df['label'], random_state=random_seed)
return train_df, val_df, test_df
def compute_metrics(eval_pred):
f1_metric = evaluate.load("f1")
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
results = {}
results.update(f1_metric.compute(predictions=predictions,
references=labels, average="weighted"))
return results
def fine_tune(train_df, valid_df, checkpoints_path, id2label, label2id, model):
# pandas dataframe to huggingface Dataset
train_dataset = Dataset.from_pandas(train_df)
valid_dataset = Dataset.from_pandas(valid_df)
# get tokenizer and model from huggingface
tokenizer = AutoTokenizer.from_pretrained(model) # put your model here
model = AutoModelForSequenceClassification.from_pretrained(
# put your model here
model, num_labels=len(label2id), id2label=id2label, label2id=label2id
)
# tokenize data for train/valid
tokenized_train_dataset = train_dataset.map(
preprocess_function, batched=True, fn_kwargs={'tokenizer': tokenizer})
tokenized_valid_dataset = valid_dataset.map(
preprocess_function, batched=True, fn_kwargs={'tokenizer': tokenizer})
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
#Older version of Transformers (4.32.1) requires a dataloaderconfig in the trainer
# Define your DataLoaderConfiguration
dataloader_config = DataLoaderConfiguration(
dispatch_batches=None,
split_batches=False,
even_batches=True,
use_seedable_sampler=True
)
# create Trainer
training_args = TrainingArguments(
output_dir=checkpoints_path,
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=2,
weight_decay=0.01,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train_dataset,
eval_dataset=tokenized_valid_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
#dataloader_config=dataloader_config #see data loader config definition
)
trainer.train()
# save best model
best_model_path = checkpoints_path+'/best/'
if not os.path.exists(best_model_path):
os.makedirs(best_model_path)
trainer.save_model(best_model_path)
def test(test_df, model_path, id2label, label2id):
# load tokenizer from saved model
tokenizer = AutoTokenizer.from_pretrained(model_path)
# load best model
model = AutoModelForSequenceClassification.from_pretrained(
model_path, num_labels=len(label2id), id2label=id2label, label2id=label2id
)
test_dataset = Dataset.from_pandas(test_df)
tokenized_test_dataset = test_dataset.map(
preprocess_function, batched=True, fn_kwargs={'tokenizer': tokenizer})
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# create Trainer
trainer = Trainer(
model=model,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
# get logits from predictions and evaluate results using classification report
predictions = trainer.predict(tokenized_test_dataset)
prob_pred = softmax(predictions.predictions, axis=-1)
preds = np.argmax(predictions.predictions, axis=-1)
metric = evaluate.load("bstrai/classification_report")
results = metric.compute(
predictions=preds, references=predictions.label_ids)
print(results)
# return dictionary of classification report
return preds
if __name__ == '__main__':
random_seed = 0
train_path = './/data//SubtaskA//medium//subtaskA_train_monolingual.jsonl'
test_path = './/data//SubtaskA//medium//subtaskA_monolingual.jsonl'
model = 'google-bert/bert-base-uncased'
prediction_path = ".//Results_model_bert.jsonl"
subtask = "A"
if not os.path.exists(train_path):
logging.error("File doesnt exists: {}".format(train_path))
raise ValueError("File doesnt exists: {}".format(train_path))
if not os.path.exists(test_path):
logging.error("File doesnt exists: {}".format(train_path))
raise ValueError("File doesnt exists: {}".format(train_path))
id2label = {0: "human", 1: "machine"}
label2id = {"human": 0, "machine": 1}
set_seed(random_seed)
# get data for train/dev/test sets
train_df, valid_df, test_df = get_data(train_path, test_path, random_seed)
# train detector model
fine_tune(train_df, valid_df,
f"{model}/subtask{subtask}/{random_seed}", id2label, label2id, model)
# test detector model
predictions = test(
test_df, f"{model}/subtask{subtask}/{random_seed}/best/", id2label, label2id)
# logging.info(results)
predictions_df = pd.DataFrame({'id': test_df['id'], 'label': predictions})
predictions_df.to_json(prediction_path, lines=True, orient='records')
# Step 8: Validate Results.jsonl
# python .\format_checker.py --pred_files_path .\Results.jsonl
#
# Step 9: Scoring
# Use the provided scorer script to compute scores
# python scorer.py --gold_file_path .\data\SubtaskA\subtaskA_monolingual_gold.jsonl --pred_file_path .\Results_model_bert.jsonl
# Step 10: Report
# Write a report summarizing your approach, models used, evaluation results, etc.