Skip to content

Latest commit

 

History

History
83 lines (66 loc) · 4.73 KB

File metadata and controls

83 lines (66 loc) · 4.73 KB

ConstraintProgrammingExtensions.jl

Dev Project Status: Active – The project has reached a stable, usable state and is being actively developed. The MIT License version DOI

Continuous integration Coverage Status

This package provides extensions to MathOptInterface in order to support constraint programming. This allows to use the same user model with several solvers.

On top of providing a uniform interface, this package also implements a quantity of bridges, i.e. reformulations of constraints, to bridge the gap when a solver does not support a specific constraint. In particular, the set of bridges should make it possible to transform any CP model into a MIP model.

Currently, the following solvers are using this interface:

An example

For instance, you can use this package to formulate a colouring problem on a map:

using MathOptInterface
using ConstraintProgrammingExtensions
using  # Import your solver.

const MOI = MathOptInterface
const CP = ConstraintProgrammingExtensions

model =  # Depending on the solver you want to use.

# Create the variables: six countriers; the value is the colour number for each country
belgium, _ = MOI.add_constrained_variable(model, MOI.Integer())
denmark, _ = MOI.add_constrained_variable(model, MOI.Integer())
france, _ = MOI.add_constrained_variable(model, MOI.Integer())
germany, _ = MOI.add_constrained_variable(model, MOI.Integer())
luxembourg, _ = MOI.add_constrained_variable(model, MOI.Integer())
netherlands, _ = MOI.add_constrained_variable(model, MOI.Integer())

# Constrain the colours to be in {0, 1, 2, 3}
MOI.add_constraint(model, belgium, MOI.Interval(0, 3))
MOI.add_constraint(model, denmark, MOI.Interval(0, 3))
MOI.add_constraint(model, france, MOI.Interval(0, 3))
MOI.add_constraint(model, germany, MOI.Interval(0, 3))
MOI.add_constraint(model, luxembourg, MOI.Interval(0, 3))
MOI.add_constraint(model, netherlands, MOI.Interval(0, 3))

# Two adjacent countries must have different colours.
countries(c1, c2) = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([1, -1], [c1, c2]), 0)
MOI.add_constraint(model, countries(belgium, france), CP.DifferentFrom(0))
MOI.add_constraint(model, countries(belgium, germany), CP.DifferentFrom(0))
MOI.add_constraint(model, countries(belgium, netherlands), CP.DifferentFrom(0))
MOI.add_constraint(model, countries(belgium, luxembourg), CP.DifferentFrom(0))
MOI.add_constraint(model, countries(denmark, germany), CP.DifferentFrom(0))
MOI.add_constraint(model, countries(france, germany), CP.DifferentFrom(0))
MOI.add_constraint(model, countries(france, luxembourg), CP.DifferentFrom(0))
MOI.add_constraint(model, countries(germany, luxembourg), CP.DifferentFrom(0))
MOI.add_constraint(model, countries(germany, netherlands), CP.DifferentFrom(0))

# Solve the model.
MOI.optimize!(model)

# Check if the solution is optimum.
@assert MOI.get(model, MOI.TerminationStatus()) == MOI.OPTIMAL

# Get the solution
@show MOI.get(model, MOI.VariablePrimal(), belgium)
@show MOI.get(model, MOI.VariablePrimal(), denmark)
@show MOI.get(model, MOI.VariablePrimal(), france)
@show MOI.get(model, MOI.VariablePrimal(), germany)
@show MOI.get(model, MOI.VariablePrimal(), luxembourg)
@show MOI.get(model, MOI.VariablePrimal(), netherlands)