We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
julia> module Regression using CatBoost.MLJCatBoostInterface using DataFrames using MLJBase train_data = DataFrame([[1,4,30], [4,5,40], [5,6,50], [6,7,60]], :auto) eval_data = DataFrame([[2,1], [4,4], [6,50], [8,60]], :auto) train_labels = [10.0, 20.0, 30.0] # Initialize MLJ Machine model = CatBoostRegressor(iterations = 2, learning_rate = 1, depth = 2) mach = machine(model, train_data, train_labels) # Fit model MLJBase.fit!(mach) # Get predictions preds = predict(model, eval_data) end # module WARNING: replacing module Regression. [ Info: Training machine(CatBoostRegressor(iterations = 2, …), …). ERROR: MethodError: no method matching predict(::CatBoost.MLJCatBoostInterface.CatBoostRegressor, ::DataFrames.DataFrame) Closest candidates are: predict(::CatBoost.MLJCatBoostInterface.CatBoostRegressor, ::Any, ::Any) @ CatBoost ~/.julia/packages/CatBoost/TiqIz/src/mlj_catboostregressor.jl:90 predict(::CatBoost.MLJCatBoostInterface.CatBoostClassifier, ::Any, ::Any) @ CatBoost ~/.julia/packages/CatBoost/TiqIz/src/mlj_catboostclassifier.jl:100 predict(::MLJBase.Machine, ::Any) @ MLJBase ~/.julia/packages/MLJBase/mIaqI/src/operations.jl:130 ... Stacktrace: [1] top-level scope @ REPL[10]:19 (jl_VyECfX) pkg> st Status `/private/var/folders/jb/plyyfc_d2bz195_0rc0n_zcw0000gp/T/jl_VyECfX/Project.toml` [e2e10f9a] CatBoost v0.3.4 [a93c6f00] DataFrames v1.6.1 [a7f614a8] MLJBase v1.1.1 [6099a3de] PythonCall v0.9.15
The text was updated successfully, but these errors were encountered:
works, ty!
julia> module Regression using CatBoost.MLJCatBoostInterface using DataFrames using MLJBase # Initialize data train_data = DataFrame([[1, 4, 30], [4, 5, 40], [5, 6, 50], [6, 7, 60]], :auto) train_labels = [10.0, 20.0, 30.0] eval_data = DataFrame([[2, 1], [4, 4], [6, 50], [8, 60]], :auto) # Initialize CatBoostClassifier model = CatBoostRegressor(; iterations=2, learning_rate=1.0, depth=2) mach = machine(model, train_data, train_labels) # Fit model MLJBase.fit!(mach) # Get predictions preds_class = MLJBase.predict(mach, eval_data) end # module [ Info: Training machine(CatBoostRegressor(iterations = 2, …), …). Main.Regression julia> Regression.preds_class 2-element Vector{Float64}: 15.625 18.125
Sorry, something went wrong.
No branches or pull requests
The text was updated successfully, but these errors were encountered: