-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpowerpredict_linear_regression.py
111 lines (82 loc) · 3.14 KB
/
powerpredict_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import pandas as pd
import os
import sklearn
import sklearn.metrics
import sklearn.model_selection
import sklearn.linear_model
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing
from sklearn.model_selection import cross_val_score
import os
import pandas as pd
N = 21
le = preprocessing.OrdinalEncoder()
DATASET_PATH = "powerpredict_dataset.csv"
powerpredict = pd.read_csv(DATASET_PATH)
X = powerpredict.drop(columns=["power_consumption"])
y = powerpredict[["power_consumption"]]
encoder = preprocessing.OrdinalEncoder()
# Encode the data without the first row
encoded_data = encoder.fit_transform(X)
# Create a DataFrame with the encoded data
data = pd.DataFrame(encoded_data)
# Fill NaN values with mean
mean_value = data.mean()
data = data.fillna(mean_value)
allData = pd.concat([data, y], axis=1)
# Compute the correlation matrix
correlation_matrix = allData.corr()
# Get the most correlated features and throw away the ones that don't have enough correlation
power_cons_corr = (
correlation_matrix["power_consumption"].abs().sort_values(ascending=False)
)
selected_columns = power_cons_corr[1:N].index.tolist()
x_filtered = allData[selected_columns]
# split the set
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
x_filtered, y, test_size=0.20, random_state=22
)
# linear regression
neigh = make_pipeline(PolynomialFeatures(2), LinearRegression())
neigh.fit(X_train, y_train)
y_predicted = neigh.predict(X_test)
y_predicted_train = neigh.predict(X_train)
from joblib import dump, load
dump(neigh, "linear_regression.joblib")
dataset_score = sklearn.metrics.mean_absolute_error(y_train, y_predicted_train)
print("Test score:" + str(dataset_score))
dataset_score = sklearn.metrics.mean_absolute_error(y_test, y_predicted)
print("Train score:" + str(dataset_score))
cv_scores = cross_val_score(
neigh, X_train, y_train, cv=10
) # Adjust the number of folds as needed
# Print the cross-validation scores
from joblib import dump, load
dump(neigh, "linear_regression.joblib")
def leader_board_predict_fn(values):
values = le.fit_transform(values)
# only get the most features that were mostly correlated to the model
values_filtered = values[:, selected_columns]
from joblib import dump, load
loaded_rfr = load(
"linear_regression.joblib"
) # Provide the file path to the saved model
return loaded_rfr.predict(values_filtered)
try:
test_data = pd.read_csv("hidden_powerpredict.csv")
a = test_data.drop(columns=["power_consumption"])
b = test_data[["power_consumption"]]
y_predicted = leader_board_predict_fn(a)
hiddendataset_score = sklearn.metrics.mean_absolute_error(b, y_predicted)
dataset_mean = y_test.mean().values[0]
dataset_accuracy = (1 - hiddendataset_score / dataset_mean) * 100
print("Accuracy:" + str(dataset_accuracy))
print(
"train score:" + str(sklearn.metrics.explained_variance_score(b, y_predicted))
)
print(f"Test Dataset Score: {hiddendataset_score}")
except Exception as e:
err = str(e)
print(err)