-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSI_pretrain.py
297 lines (252 loc) · 14.1 KB
/
SI_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.animation as animation
from platoon_env import PlatoonEnv
from ppo_agent import PPOAgent
import torch
import argparse
import torch.nn as nn
import torch.nn.functional as F
from NN_SI import NN_SI_DE_Module, OVM_Estimator, Disturbance_Estimator
import random
from torch.optim.lr_scheduler import LinearLR
import torch.utils.data as Data
from sklearn.preprocessing import MinMaxScaler, StandardScaler
class FC(nn.Module):
def __init__(self, state_num):
super(FC,self).__init__()
self.fc1 = nn.Linear(state_num, 50)
self.fc2 = nn.Linear(50, 100)
self.fc3 = nn.Linear(100, 50)
self.fc4 = nn.Linear(50, 1)
self.tanh = nn.Tanh()
self.ReLU = nn.ReLU()
def forward(self,x):
if x.dim() == 1:
x = x.unsqueeze(0)
x = self.tanh(self.fc1(x))
x = self.tanh(self.fc2(x))
x = self.tanh(self.fc3(x))
x = self.fc4(x)
return x
def load_pretrain_model_and_test():
# Create the environment
max_timesteps = 10000
env = PlatoonEnv(max_steps=max_timesteps)
# Set the device
device = 'cpu' #'cuda' if torch.cuda.is_available() else 'cpu'
# Set the safety layer
safety_layer_enabled = True
safety_layer_no_grad = False
nn_cbf_enabled = False
nn_cbf_update = False
# Select the agent
agent_select = 'ppo'
# Set if train the agent
agent_train = False
# Set if update the filter
filter_update = False
# Set if update the SIDE
SIDE_update = False
SIDE_enabled = True
parser = argparse.ArgumentParser("Hyperparameters Setting for PPO")
parser.add_argument("--max_train_steps", type=int, default=int(3e6), help=" Maximum number of training steps")
parser.add_argument("--evaluate_freq", type=float, default=5e3, help="Evaluate the policy every 'evaluate_freq' steps")
parser.add_argument("--save_freq", type=int, default=20, help="Save frequency")
parser.add_argument("--batch_size", type=int, default=2048, help="Batch size")
parser.add_argument("--mini_batch_size", type=int, default=64, help="Minibatch size")
parser.add_argument("--hidden_width", type=int, default=64, help="The number of neurons in hidden layers of the neural network")
parser.add_argument("--lr_a", type=float, default=3e-4, help="Learning rate of actor")
parser.add_argument("--lr_c", type=float, default=3e-4, help="Learning rate of critic")
parser.add_argument("--gamma", type=float, default=0.99, help="Discount factor")
parser.add_argument("--lamda", type=float, default=0.95, help="GAE parameter")
parser.add_argument("--epsilon", type=float, default=0.2, help="PPO clip parameter")
parser.add_argument("--K_epochs", type=int, default=10, help="PPO parameter")
parser.add_argument("--is_adv_norm", type=bool, default=True, help="Advantage normalization")
parser.add_argument("--is_state_norm", type=bool, default=True, help="State normalization")
parser.add_argument("--is_reward_norm", type=bool, default=False, help="Reward normalization")
parser.add_argument("--is_reward_scaling", type=bool, default=True, help="Reward scaling")
parser.add_argument("--entropy_coef", type=float, default=0.01, help="Policy entropy")
parser.add_argument("--is_lr_decay", type=bool, default=True, help="Learning rate Decay")
parser.add_argument("--is_grad_clip", type=bool, default=True, help="Gradient clip")
parser.add_argument("--is_orthogonal_init", type=bool, default=True, help="Orthogonal initialization")
parser.add_argument("--adam_eps", type=float, default=True, help="Set Adam epsilon=1e-5")
parser.add_argument("--is_tanh", type=float, default=True, help="Tanh activation function")
parser.add_argument("--safety_layer_enabled", type=bool, default=safety_layer_enabled, help="Safety layer enabled or not")
parser.add_argument("--nn_cbf_enabled", type=bool, default = nn_cbf_enabled, help="NN dynamics enabled or not")
parser.add_argument("--cbf_tau", type=float, default=0.3, help="CAV index in the platoon")
parser.add_argument("--cbf_gamma", type=float, default=2, help="CAV index in the platoon")
parser.add_argument("--CAV_index", type=float, default=1, help="CAV index in the platoon")
parser.add_argument("--CAV_idx", type=float, default=1, help="CAV index in the platoon")
parser.add_argument("--FV1_idx", type=float, default=2, help="CAV index in the platoon")
parser.add_argument("--FV2_idx", type=float, default=3, help="CAV index in the platoon")
parser.add_argument("--Lf_CAV", type=float, default=0.5, help="CAV index in the platoon")
parser.add_argument("--Lg_CAV", type=float, default=0.5, help="CAV index in the platoon")
parser.add_argument("--Lf_FV1", type=float, default=0.5, help="CAV index in the platoon")
parser.add_argument("--Lg_FV1", type=float, default=0.5, help="CAV index in the platoon")
parser.add_argument("--Lf_FV2", type=float, default=0.5, help="CAV index in the platoon")
parser.add_argument("--Lg_FV2", type=float, default=0.5, help="CAV index in the platoon")
parser.add_argument("--dt", type=float, default=0.1, help="CAV index in the platoon")
parser.add_argument("--lr_cbf", type=float, default=1e-4, help="CAV index in the platoon")
parser.add_argument("--state_size_nncbf", type=float, default=4, help="CAV index in the platoon")
parser.add_argument("--hidden_size_nncbf", type=float, default=128, help="CAV index in the platoon")
parser.add_argument("--output_size_nncbf", type=float, default=1, help="CAV index in the platoon")
parser.add_argument("--safety_layer_no_grad", type=bool, default=safety_layer_no_grad, help="CAV index in the platoon")
parser.add_argument("--car_following_parameters", type=list, default=[0.5,0.5,0.5], help="car following parameters initialized") #[1.2566, 1.5000, 0.9000]
parser.add_argument("--nn_cbf_update",type=bool, default=nn_cbf_update, help="NN dynamics online update enabled or not")
parser.add_argument("--num_episodes",type=int, default = 500, help="number of training episodes")
parser.add_argument("--vehicle_num",type=int, default = 5, help="number of vehicles in the platoon")
parser.add_argument("--filter_update", type=bool, default=filter_update, help="filter update enabled or not")
parser.add_argument("--SIDE_update", type=bool, default=SIDE_update, help="SIDE update enabled or not")
parser.add_argument("--lr_cf", type=float, default=1e-4, help="SI learning rate")
parser.add_argument("--lr_de", type=float, default=1e-4, help="DE learning rate")
parser.add_argument("--batch_size_SIDE", type=int, default=256, help="SIDE batch size")
parser.add_argument("--buffer_size_SIDE", type=int, default=10000, help="SIDE buffer size")
parser.add_argument("--SIDE_enabled", type=bool, default=SIDE_enabled, help="SIDE enabled or not")
args = parser.parse_args()
args.device = device
args.state_dim = env.observation_space.shape[0]
args.action_dim = env.action_space.shape[0]
args.max_action = 5.0
args.max_episode_steps = env.max_steps
agent = PPOAgent(args)
agent.load("model_parameters", 500)
#env.select_scenario = 4
#velocity_data, spacing_data = test(agent, env, agent_select)
return agent, env, agent_select #velocity_data, spacing_data
def test(agent, env, train_type, num_episodes=1):
'''
Test the agent
'''
episode_rewards = []
velocity_data = []
spacing_data = []
acceleration_data = []
for episode in range(num_episodes):
# Reset the environment
state, acceleration = env.reset()
if train_type == 0:
env.select_scenario = 0
else:
env_select = random.random()
if env_select < 0.8:
env.select_scenario = 0
elif env_select < 0.9:
env.select_scenario = 1
#elif env_select < 0.75:
# env.select_scenario = 2
#elif env_select < 0.875:
# env.select_scenario = 3
else:
env.select_scenario = 4
done = False
episode_reward = 0
# Run the episode
while not done:
# Select an action using different policies
action, action_prob = agent.act(state, acceleration = acceleration)
next_state, reward, next_acceleration, done, _ = env.step(action)
# Update the state
state = next_state
episode_reward += reward
# Collect data for visualization
velocity_data.append(env.get_velocity())
spacing_data.append(env.get_spacing())
acceleration_data.append(env.get_acceleration())
# Print the test result
# print("Test Episode: {}".format(episode))
# Save the rewards
episode_rewards.append(episode_reward)
# Convert data to NumPy arrays
s_star = 20
v_star = 15
velocity_data = np.array(velocity_data)
spacing_data = np.array(spacing_data)
acceleration_data = np.array(acceleration_data)
return velocity_data, spacing_data, acceleration_data
if __name__ == "__main__":
data_saving = False
if data_saving:
agent, env, agent_select = load_pretrain_model_and_test()
velocity_data, spacing_data, acceleration_data = test(agent, env, 0)
np.save('SI_pretrain/velocity_data.npy', velocity_data)
np.save('SI_pretrain/spacing_data.npy', spacing_data)
np.save('SI_pretrain/acceleration_data.npy', acceleration_data)
else:
velocity_data = np.load('SI_pretrain/velocity_data.npy')
spacing_data = np.load('SI_pretrain/spacing_data.npy')
acceleration_data = np.load('SI_pretrain/acceleration_data.npy')
X = np.array([spacing_data[:,4], velocity_data[:,4], velocity_data[:,3]]).transpose(1,0)
scale = MinMaxScaler(feature_range=(0,1))
scale.fit(X)
new_spacing_data= scale.transform(X)[:,0]
new_velocity_data = scale.transform(X)[:,1]
new_preceding_velocity_data = scale.transform(X)[:,2]
train_data = Data.TensorDataset(torch.tensor([new_spacing_data,new_velocity_data,new_preceding_velocity_data], dtype=torch.float32).transpose(0, 1), torch.tensor(acceleration_data[:,4], dtype=torch.float32))
train_data_loader = Data.DataLoader(dataset=train_data, batch_size=128, shuffle=True)
lr = 1e-3
state_num = 3
device = 'cpu'
model = FC(state_num).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr = lr)
epochs = 5000
scheduler = LinearLR(optimizer, start_factor=1, end_factor=1/100, total_iters=epochs)
dt = 0.1
#agent, env, agent_select = load_pretrain_model_and_test()
for i in range(epochs):
for step, (state, acceleration) in enumerate(train_data_loader):
optimizer.zero_grad()
action_pred = model(state)
loss = F.mse_loss(action_pred.squeeze(1), acceleration)
loss.backward()
optimizer.step()
scheduler.step()
if i % 1 == 0:
print('epochs: ', i, 'loss: ', loss.item())
torch.save(model.state_dict(), 'SI_pretrain/fc_wo_equi.pth')
'''
lr_cf = 1e-2
lr_de = 1e-2
state_num = 3
action_num = 1
device = 'cpu'
car_following_estimator = OVM_Estimator().to(device)
disturbance_estimator = Disturbance_Estimator(state_num, action_num).to(device)
optimizer_cf = torch.optim.Adam(car_following_estimator.parameters(), lr = lr_cf)
optimizer_de = torch.optim.Adam(disturbance_estimator.parameters(), lr = lr_de)
epochs = 200
scheduler_cf = LinearLR(optimizer_cf, start_factor=1, end_factor=1/400, total_iters=epochs)
scheduler_de = LinearLR(optimizer_de, start_factor=1, end_factor=1/400, total_iters=epochs)
dt = 0.1
agent, env, agent_select = load_pretrain_model_and_test()
for i in range(epochs):
velocity_data, spacing_data = test(agent, env, 0)
state = torch.tensor([spacing_data[:-1,4], -velocity_data[:-1,4], velocity_data[:-1,3]], dtype=torch.float32).transpose(0, 1)
next_state = torch.tensor([spacing_data[1:,4], -velocity_data[1:,4], velocity_data[1:,3]], dtype=torch.float32).transpose(0, 1)
optimizer_cf.zero_grad()
action_pred = car_following_estimator(state)
loss_cf = F.mse_loss(action_pred.squeeze(1), next_state[:,1]-state[:,1])
loss_cf.backward()
optimizer_cf.step()
scheduler_cf.step()
if i % 1 == 0:
print('epochs: ', i, 'loss_cf: ', loss_cf.item())
print('car-following model parameters: ', [car_following_estimator.alpha1.cpu().detach().numpy().tolist(), car_following_estimator.alpha2.cpu().detach().numpy().tolist(), car_following_estimator.alpha3.cpu().detach().numpy().tolist()])
torch.save(car_following_estimator.state_dict(), 'SI_pretrain/car_following_estimator.pth')
for i in range(epochs):
velocity_data, spacing_data = test(agent, env, 1)
state = torch.tensor([spacing_data[:-1,5], -velocity_data[:-1,5], velocity_data[:-1,3]], dtype=torch.float32).transpose(0, 1)
next_state = torch.tensor([spacing_data[1:,5], -velocity_data[1:,5], velocity_data[1:,3]], dtype=torch.float32).transpose(0, 1)
optimizer_de.zero_grad()
action_pred = car_following_estimator(state)
action_disturbance = disturbance_estimator(torch.cat((state, action_pred.detach().cpu()), 1))
next_state_pred_w_de = -state[:, 1] + dt * (action_pred.detach().cpu().squeeze(1) + action_disturbance)
loss_de = F.mse_loss(action_pred.squeeze(1), next_state[:,1]-state[:,1])
loss_de.backward()
optimizer_de.step()
scheduler_de.step()
if i % 1 == 0:
print('epochs: ', i, 'loss_de: ', loss_de.item())
torch.save(disturbance_estimator.state_dict(), 'SI_pretrain/disturbance_estimator.pth')
'''