forked from tsingke/Machine-Learning_ZhouZhihua
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path周志华《机器学习》课后习题解答系列(四):Ch3.5 - 编程实现线性判别分析.html
409 lines (341 loc) · 11.9 KB
/
周志华《机器学习》课后习题解答系列(四):Ch3.5 - 编程实现线性判别分析.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
<!DOCTYPE html>
<html>
<head>
<title>周志华《机器学习》课后习题解答系列(四):Ch3.5 - 编程实现线性判别分析</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">
/* GitHub stylesheet for MarkdownPad (http://markdownpad.com) */
/* Author: Nicolas Hery - http://nicolashery.com */
/* Version: b13fe65ca28d2e568c6ed5d7f06581183df8f2ff */
/* Source: https://github.com/nicolahery/markdownpad-github */
/* RESET
=============================================================================*/
html, body, div, span, applet, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote, pre, a, abbr, acronym, address, big, cite, code, del, dfn, em, img, ins, kbd, q, s, samp, small, strike, strong, sub, sup, tt, var, b, u, i, center, dl, dt, dd, ol, ul, li, fieldset, form, label, legend, table, caption, tbody, tfoot, thead, tr, th, td, article, aside, canvas, details, embed, figure, figcaption, footer, header, hgroup, menu, nav, output, ruby, section, summary, time, mark, audio, video {
margin: 0;
padding: 0;
border: 0;
}
/* BODY
=============================================================================*/
body {
font-family: Helvetica, arial, freesans, clean, sans-serif;
font-size: 14px;
line-height: 1.6;
color: #333;
background-color: #fff;
padding: 20px;
max-width: 960px;
margin: 0 auto;
}
body>*:first-child {
margin-top: 0 !important;
}
body>*:last-child {
margin-bottom: 0 !important;
}
/* BLOCKS
=============================================================================*/
p, blockquote, ul, ol, dl, table, pre {
margin: 15px 0;
}
/* HEADERS
=============================================================================*/
h1, h2, h3, h4, h5, h6 {
margin: 20px 0 10px;
padding: 0;
font-weight: bold;
-webkit-font-smoothing: antialiased;
}
h1 tt, h1 code, h2 tt, h2 code, h3 tt, h3 code, h4 tt, h4 code, h5 tt, h5 code, h6 tt, h6 code {
font-size: inherit;
}
h1 {
font-size: 28px;
color: #000;
}
h2 {
font-size: 24px;
border-bottom: 1px solid #ccc;
color: #000;
}
h3 {
font-size: 18px;
}
h4 {
font-size: 16px;
}
h5 {
font-size: 14px;
}
h6 {
color: #777;
font-size: 14px;
}
body>h2:first-child, body>h1:first-child, body>h1:first-child+h2, body>h3:first-child, body>h4:first-child, body>h5:first-child, body>h6:first-child {
margin-top: 0;
padding-top: 0;
}
a:first-child h1, a:first-child h2, a:first-child h3, a:first-child h4, a:first-child h5, a:first-child h6 {
margin-top: 0;
padding-top: 0;
}
h1+p, h2+p, h3+p, h4+p, h5+p, h6+p {
margin-top: 10px;
}
/* LINKS
=============================================================================*/
a {
color: #4183C4;
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
/* LISTS
=============================================================================*/
ul, ol {
padding-left: 30px;
}
ul li > :first-child,
ol li > :first-child,
ul li ul:first-of-type,
ol li ol:first-of-type,
ul li ol:first-of-type,
ol li ul:first-of-type {
margin-top: 0px;
}
ul ul, ul ol, ol ol, ol ul {
margin-bottom: 0;
}
dl {
padding: 0;
}
dl dt {
font-size: 14px;
font-weight: bold;
font-style: italic;
padding: 0;
margin: 15px 0 5px;
}
dl dt:first-child {
padding: 0;
}
dl dt>:first-child {
margin-top: 0px;
}
dl dt>:last-child {
margin-bottom: 0px;
}
dl dd {
margin: 0 0 15px;
padding: 0 15px;
}
dl dd>:first-child {
margin-top: 0px;
}
dl dd>:last-child {
margin-bottom: 0px;
}
/* CODE
=============================================================================*/
pre, code, tt {
font-size: 12px;
font-family: Consolas, "Liberation Mono", Courier, monospace;
}
code, tt {
margin: 0 0px;
padding: 0px 0px;
white-space: nowrap;
border: 1px solid #eaeaea;
background-color: #f8f8f8;
border-radius: 3px;
}
pre>code {
margin: 0;
padding: 0;
white-space: pre;
border: none;
background: transparent;
}
pre {
background-color: #f8f8f8;
border: 1px solid #ccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
border-radius: 3px;
}
pre code, pre tt {
background-color: transparent;
border: none;
}
kbd {
-moz-border-bottom-colors: none;
-moz-border-left-colors: none;
-moz-border-right-colors: none;
-moz-border-top-colors: none;
background-color: #DDDDDD;
background-image: linear-gradient(#F1F1F1, #DDDDDD);
background-repeat: repeat-x;
border-color: #DDDDDD #CCCCCC #CCCCCC #DDDDDD;
border-image: none;
border-radius: 2px 2px 2px 2px;
border-style: solid;
border-width: 1px;
font-family: "Helvetica Neue",Helvetica,Arial,sans-serif;
line-height: 10px;
padding: 1px 4px;
}
/* QUOTES
=============================================================================*/
blockquote {
border-left: 4px solid #DDD;
padding: 0 15px;
color: #777;
}
blockquote>:first-child {
margin-top: 0px;
}
blockquote>:last-child {
margin-bottom: 0px;
}
/* HORIZONTAL RULES
=============================================================================*/
hr {
clear: both;
margin: 15px 0;
height: 0px;
overflow: hidden;
border: none;
background: transparent;
border-bottom: 4px solid #ddd;
padding: 0;
}
/* TABLES
=============================================================================*/
table th {
font-weight: bold;
}
table th, table td {
border: 1px solid #ccc;
padding: 6px 13px;
}
table tr {
border-top: 1px solid #ccc;
background-color: #fff;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
/* IMAGES
=============================================================================*/
img {
max-width: 100%
}
</style>
</head>
<body>
<p>本系列主要采用<strong>Python-sklearn</strong>实现,环境搭建可参考<a href="http://blog.csdn.net/snoopy_yuan/article/details/61211639"> 数据挖掘入门:Python开发环境搭建(eclipse-pydev模式)</a>.</p>
<p>相关答案和源代码托管在我的Github上:<a href="https://github.com/PY131/Machine-Learning_ZhouZhihua">PY131/Machine-Learning_ZhouZhihua</a>.</p>
<h3>3.5 编程实现线性判别分析(LDA)</h3>
<blockquote>
<p><img src="Ch3/3.5.png" /></p>
</blockquote>
<p>本题采用题3.3中的西瓜数据集如下图示:</p>
<blockquote>
<p><img src="Ch3/3.3.1.png" /></p>
</blockquote>
<p>这里采用基于<strong>sklearn</strong>和<strong>自己编程实现</strong>两种方式实现线性判别分析(<a href="https://github.com/PY131/Machine-Learning_ZhouZhihua/tree/master/ch3_linear_model/3.5_LDA">查看完整代码</a>)。</p>
<p>关于数据集的介绍:</p>
<p>具体过程如下:</p>
<h4>1. 数据导入、可视化、预分析:</h4>
<p>可以参照<a href="http://blog.csdn.net/snoopy_yuan/article/details/63684219">周志华《机器学习》课后习题解答系列(四):Ch3.3 - 编程实现对率回归</a>中的第一步。</p>
<h4>2. 采用sklean得到线性判别分析模型:</h4>
<p>采用sklearn.discriminant_analysis.LinearDiscriminantAnalysis直接实现基础的LDA,通过分割数据集,在训练集上训练数据,在预测集上度量模型优劣。</p>
<p>给出样例代码如下:</p>
<pre><code>from sklearn import model_selection
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn import metrics
import matplotlib.pyplot as plt
# generalization of train and test set
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.5, random_state=0)
# model fitting
lda_model = LinearDiscriminantAnalysis(solver='lsqr', shrinkage=None).fit(X, y)
# model validation
y_pred = lda_model.predict(X_test)
# summarize the fit of the model
print(metrics.confusion_matrix(y_test, y_pred))
print(metrics.classification_report(y_test, y_pred))
</code></pre>
<p>得出的混淆矩阵及相关度量结果如下:</p>
<pre><code>[[4 1]
[1 3]]
precision recall f1-score support
0.0 0.80 0.80 0.80 5
1.0 0.75 0.75 0.75 4
avg / total 0.78 0.78 0.78 9
</code></pre>
<p>可以看出,由于数据集的散度不太明显,得出的类别判断存在较大误差。总体来看,这里的线性判别分类器与3.3题的对率回归性能相当(accuracy≈0.78)。</p>
<p>基于matplotlib绘制出LDA的分类区域如下图示:</p>
<blockquote>
<p><img src="Ch3/3.5.2.png" /></p>
</blockquote>
<p>可以看出,由于数据集的散度不太明显,决策边界存在较大误差。</p>
<h4>3. 自己编程实现线性判别分析:</h4>
<p>关于LDA的原理及参数求解,可参考书上p61、62。所谓线性判别。类似PCA,LDA可将较高维数据投影到较低维空间上,分析其降维后的数据特征的类别区分情况。</p>
<p>这里采用西瓜数据集,包含2个属性(特征),一个类标签(二分类0、1)。在此上运用LDA,即是要找到最优直线,映射到直线上的数据特征类分明显。</p>
<p>如何区分类别呢?采用类内散度(within-class scatter)最小化,类间散度(between-class scatter)最大化,关于散度的定义参考书中p61式(3.33)和(3.34)。</p>
<p>优化目标为最大化下式(Sw-类内散度,Sb-类间散度,w-直线方向向量):</p>
<blockquote>
<p><img src="Ch3/3.5.0.1.png" /></p>
</blockquote>
<p>我们的目的是最大化上面的式子,根据书中推导,最优解(直线参数)如下式:</p>
<blockquote>
<p><img src="Ch3/3.5.0.2.png" /></p>
</blockquote>
<p>相关详细过程参考树p61-62页。</p>
<ul>
<li>编程:根据式3.39计算w:</li>
</ul>
<p>样例代码如下:</p>
<pre><code># computing the d-dimensional mean vectors
import numpy as np
# 1-st. get the mean vector of each class
u = []
for i in range(2): # two class
u.append(np.mean(X[y==i], axis=0)) # column mean
# 2-nd. computing the within-class scatter matrix, refer on book (3.33)
m,n = np.shape(X)
Sw = np.zeros((n,n))
for i in range(m):
x_tmp = X[i].reshape(n,1) # row -> cloumn vector
if y[i] == 0: u_tmp = u[0].reshape(n,1)
if y[i] == 1: u_tmp = u[1].reshape(n,1)
Sw += np.dot( x_tmp - u_tmp, (x_tmp - u_tmp).T )
# 3-th. computing the parameter w, refer on book (3.39)
w = np.dot( Sw**-1, (u[0] - u[1]).reshape(n,1) ) # here we use a**-1 to get the inverse of a ndarray
</code></pre>
<ul>
<li>绘制LDA直线并作数据点投影来查看类簇情况:</li>
</ul>
<p>通过绘制投影的方式,可视化西瓜数据在LDA直线上类簇情况(<a href="https://github.com/PY131/Machine-Learning_ZhouZhihua/tree/master/ch3_linear_model/3.5_LDA">查看相关代码</a>),如下图示:</p>
<blockquote>
<p><img src="Ch3/3.5.3.1.png" /></p>
</blockquote>
<p>从上图看出,由于数据线性不可分,则出现类簇重叠现象。接下来,通过观查数据,我们考虑将西瓜数据集中的bad类离群点15删去(即图中左上的黑点)此时数据集的线性可分性大大提高。</p>
<p>然后再次采用LDA进行映射,得到结果图如下:</p>
<blockquote>
<p><img src="Ch3/3.5.3.2.png" /></p>
</blockquote>
<p>可以看出,在数据集变得线性可分时,二维点到一维LDA直线的投影出现明显的分类,此时LDA分类器效果很好。</p>
<p>综上所述,由于西瓜数据集自身非线性因素,LDA所得直线未能很好的表现出类别的分簇情景,说明,<strong>LDA基本模型不太适用于线性不可分</strong>的情况。要拓展到非线性,或许可以考虑<strong>SVM-核技巧</strong>。</p>
<hr />
<p>本文的重要列出索引如下:</p>
<ul>
<li><a href="http://sebastianraschka.com/Articles/2014_python_lda.html">LDA详细介绍及其本质剖析</a></li>
<li><a href="http://scikit-learn.org/stable/auto_examples/classification/plot_lda.html#sphx-glr-auto-examples-classification-plot-lda-py">sklearn官网 - LDA for classfication</a></li>
</ul>
</body>
</html>
<!-- This document was created with MarkdownPad, the Markdown editor for Windows (http://markdownpad.com) -->