-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path红黑树.cpp
434 lines (361 loc) · 11.8 KB
/
红黑树.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#include<stdafx.h>
#include<malloc.h>
#include <assert.h>
//版权声明:原创不易,转载请注明转自[weewqrer 红黑树](http://blog.csdn.net/weewqrer/article/details/51866488)
//红黑树
typedef enum ColorType {RED, BLACK} ColorType;
typedef struct rbt_t{
int key;
rbt_t * left;
rbt_t * right;
rbt_t * p;
ColorType color;
}rbt_t;
typedef struct rbt_root_t{
rbt_t* root;
rbt_t* nil;
}rbt_root_t;
//函数声明
rbt_root_t* rbt_init(void);
static void rbt_handleReorient(rbt_root_t* T, rbt_t* x, int k);
rbt_root_t* rbt_insert(rbt_root_t* &T, int k);
rbt_root_t* rbt_delete(rbt_root_t* &T, int k);
void rbt_transplant(rbt_root_t* T, rbt_t* u, rbt_t* v);
static void rbt_left_rotate( rbt_root_t* T, rbt_t* x);
static void rbt_right_rotate( rbt_root_t* T, rbt_t* x);
void rbt_inPrint(const rbt_root_t* T, rbt_t* t);
void rbt_prePrint(const rbt_t * T, rbt_t* t);
void rbt_print(const rbt_root_t* T);
static rbt_t* rbt_findMin(rbt_root_t * T, rbt_t* t);
static rbt_t* rbt_findMax(rbt_root_t * T, rbt_t* t);
static rbt_t* rbt_findMin(rbt_root_t * T, rbt_t* t){
if(t == T->nil) return T->nil;
while(t->left != T->nil)
t = t->left;
return t;
}
static rbt_t* rbt_findMax(rbt_root_t * T, rbt_t* t){
if(t == T->nil) return T->nil;
while(t->right != T->nil)
t = t->right;
return t;
}
/*
*@brief rbt_init 初始化
*/
rbt_root_t* rbt_init(void){
rbt_root_t* T;
T = (rbt_root_t*)malloc(sizeof(rbt_root_t));
assert( NULL != T);
T->nil = (rbt_t*)malloc(sizeof(rbt_t));
assert(NULL != T->nil);
T->nil->color = BLACK;
T->nil->left = T->nil->right = NULL;
T->nil->p = NULL;
T->root = T->nil;
return T;
}
/*
*@brief rbt_handleReorient 内部函数 由rbt_insert调用
* 在两种情况下调用这个函数:
* 1 x有连个红色儿子
* 2 x为新插入的结点
*
*/
void rbt_handleReorient(rbt_root_t* T, rbt_t* x, int k){
//在第一种情况下,进行颜色翻转; 在第二种情况下,相当于对新插入的x点初始化
x->color = RED;
x->left->color = x->right->color = BLACK;
//如果x.p为红色,那么x.p一定不是根,x.p.p一定不是T.nil,而且为黑色
if( RED == x->p->color){
x->p->p->color = RED;//此时x, p, x.p.p都为红
if(x->p->key < x->p->p->key){
if(k > x->p->key){
x->color = BLACK;//小心地处理颜色
rbt_left_rotate(T,x->p);
rbt_right_rotate(T,x->p);
}else{
x->p->color = BLACK;//小心地处理颜色
rbt_right_rotate(T,x->p->p);
}
}else{
if(k < x->p->key){
x->color = BLACK;
rbt_right_rotate(T,x->p);
rbt_left_rotate(T,x->p);
}else{
x->p->color = BLACK;
rbt_left_rotate(T,x->p->p);
}
}
}
T->root->color = BLACK;//无条件令根为黑色
}
/*
*@brief brt_insert 插入
*1 新插入的结点一定是红色的,如果是黑色的,会破坏条件4(每个结点到null叶结点的每条路径有同样数目的黑色结点)
*2 如果新插入的结点的父亲是黑色的,那么插入完成。 如果父亲是红色的,那么做一个旋转即可。(前提是叔叔是黑色的)
*3 我们这个插入要保证其叔叔是黑色的。也就是在x下沉过程中,不允许存在两个红色结点肩并肩。
*/
rbt_root_t* rbt_insert(rbt_root_t* &T, int k){
rbt_t * x, *p;
x = T->root;
p = x;
//令x下沉到叶子上,而且保证一路上不会有同时为红色的兄弟
while( x != T->nil){
//
//保证没有一对兄弟同时为红色, 为什么要这么做?
if(x != T->nil)
if(x->left->color == RED && x->right->color == RED)
rbt_handleReorient(T,x,k);
p = x;
if(k<x->key)
x = x->left;
else if(k>x->key)
x = x->right;
else{
printf("\n%d已存在\n",k);
return T;
}
}
//为x分配空间,并对其进行初始化
x = (rbt_t *)malloc(sizeof(rbt_t));
assert(NULL != x);
x->key = k;
x->color = RED;
x->left = x->right = T->nil;
x->p = p;
//让x的父亲指向x
if(T->root == T->nil)
T->root = x;
else if(k < p->key)
p->left = x;
else
p->right = x;
//因为一路下来,如果x的父亲是红色,那么x的叔叔肯定不是红色了,这个时候只需要做一下翻转即可。
rbt_handleReorient(T,x,k);
return T;
}
void rbt_transplant(rbt_root_t* T, rbt_t* u, rbt_t* v){
if(u->p == T->nil)
T->root = v;
else if(u == u->p->left)
u->p->left =v;
else
u->p->right = v;
v->p = u->p;
}
/*
*@brief rbt_delete 从树中删除 k
*
*
*/
rbt_root_t* rbt_delete(rbt_root_t* &T, int k){
assert(T != NULL);
if(NULL == T->root) return T;
//找到要被删除的叶子结点
rbt_t * toDelete = T->root;
rbt_t * x;
//找到值为k的结点
while(toDelete != T->nil && toDelete->key != k){
if(k<toDelete->key)
toDelete = toDelete->left;
else if(k>toDelete->key)
toDelete = toDelete->right;
}
if(toDelete == T->nil){
printf("\n%d 不存在\n",k);
return T;
}
//如果两个孩子,就找到右子树中最小的代替, alternative最多有一个右孩子
if(toDelete->left != T->nil && toDelete->right != T->nil){
rbt_t* alternative = rbt_findMin(T, toDelete->right);
k = toDelete->key = alternative->key;
toDelete = alternative;
}
if(toDelete->left == T->nil){
x = toDelete->right;
rbt_transplant(T,toDelete,toDelete->right);
}else if(toDelete->right == T->nil){
x = toDelete->left;
rbt_transplant(T,toDelete,toDelete->left);
}
if(toDelete->color == BLACK){
//x不是todelete,而是用于代替x的那个
//如果x颜色为红色的,把x涂成黑色即可, 否则 从根到x处少了一个黑色结点,导致不平衡
while(x != T->root && x->color == BLACK){
if(x == x->p->left){
rbt_t* w = x->p->right;
//情况1 x的兄弟是红色的,通过
if(RED == w->color){
w->color = BLACK;
w->p->color = RED;
rbt_left_rotate(T,x->p);
w = x->p->right;
}//处理完情况1之后,w.color== BLACK , 情况就变成2 3 4 了
//情况2 x的兄弟是黑色的,并且其儿子都是黑色的。
if(w->left->color == BLACK && w->right->color == BLACK){
if(x->p->color == RED){
x->p->color = BLACK;
w->color = RED;
break;
}else{
w->color = RED;
x = x->p;//x.p左右是平衡的,但是x.p处少了一个黑结点,所以把x.p作为新的x继续循环
continue;
}
}
//情况3 w为黑色的,左孩子为红色。(走到这一步,说明w左右不同时为黑色。)
if(w->right->color == BLACK){
w->left->color = BLACK;
w->color = RED;
rbt_right_rotate(T,w);
w = x->p->right;
}//处理完之后,变成情况4
//情况4 走到这一步说明w为黑色, w的左孩子为黑色, 右孩子为红色。
w->color=x->p->color;
x->p->color=BLACK;
w->right->color=BLACK;
rbt_left_rotate(T,x->p);
x = T->root;
}else{
rbt_t* w = x->p->left;
//1
if(w->color == RED){
w->color = BLACK;
x->p->color = RED;
rbt_right_rotate(T,x->p);
w = x->p->left;
}
//2
if(w->left->color==BLACK && w->right->color == BLACK){
if(x->p->color == RED){
x->p->color = BLACK;
w->color = RED;
break;
}else{
x->p->color = BLACK;
w->color = RED;
x = x->p;
continue;
}
}
//3
if(w->left->color == BLACK){
w->color = RED;
w->right->color = BLACK;
w = x->p->left;
}
//4
w->color=w->p->color;
x->p->color = BLACK;
w->left->color = BLACK;
rbt_right_rotate(T,x->p);
x = T->root;
}
}
x->color = BLACK;
}
//放心删除todelete 吧
free(toDelete);
return T;
}
/*
*@brief rbt_left_rotate
*@param[in] T 树根
*@param[in] x 要进行旋转的结点
*/
void rbt_left_rotate( rbt_root_t* T, rbt_t* x){
rbt_t* y = x->right;
x->right = y->left;
if(x->right != T->nil)
x->right->p = x;
y->p = x->p;
if(y->p == T->nil){
T->root = y;
}else if(y->key < y->p->key)
y->p->left = y;
else
y->p->right = y;
y->left = x;
x->p = y;
}
/*
*@brief rbt_right_rotate
*@param[in] 树根
*@param[in] 要进行旋转的结点
*/
void rbt_right_rotate( rbt_root_t* T, rbt_t* x){
rbt_t * y = x->left;
x->left = y->right;
if(T->nil != x->left)
x->left->p = x;
y->p = x->p;
if(y->p == T->nil)
T->root = y;
else if(y->key < y->p->key)
y->p->left= y;
else
y->p->right = y;
y->right = x;
x->p = y;
}
void rbt_prePrint(const rbt_root_t* T, rbt_t* t){
if(T->nil == t)return ;
if(t->color == RED)
printf("%3dR",t->key);
else
printf("%3dB",t->key);
rbt_prePrint(T,t->left);
rbt_prePrint(T,t->right);
}
void rbt_inPrint(const rbt_root_t* T, rbt_t* t){
if(T->nil == t)return ;
rbt_inPrint(T,t->left);
if(t->color == RED)
printf("%3dR",t->key);
else
printf("%3dB",t->key);
rbt_inPrint(T,t->right);
}
//打印程序包括前序遍历和中序遍历两个,因为它俩可以唯一确定一棵二叉树
void rbt_print(const rbt_root_t* T){
assert(T!=NULL);
printf("\n前序遍历 :");
rbt_prePrint(T,T->root);
printf("\n中序遍历 :");
rbt_inPrint(T,T->root);
printf("\n");
}
void rbt_test(){
rbt_root_t* T = rbt_init();
/************************************************************************/
/* 1 测试插入
/*
/*
/*输出 前序遍历 : 7B 2R 1B 5B 4R 11R 8B 14B 15R
/* 中序遍历 : 1B 2R 4R 5B 7B 8B 11R 14B 15R
/************************************************************************/
T = rbt_insert(T,11);
T = rbt_insert(T,7);
T = rbt_insert(T,1);
T = rbt_insert(T,2);
T = rbt_insert(T,8);
T = rbt_insert(T,14);
T = rbt_insert(T,15);
T = rbt_insert(T,5);
T = rbt_insert(T,4);
T = rbt_insert(T,4); //重复插入测试
rbt_print(T);
/************************************************************************/
/* 2 测试删除
/*
/*操作 连续删除4个元素 rbt_delete(T,8);rbt_delete(T,14);rbt_delete(T,7);rbt_delete(T,11);
/*输出 前序遍历 : 2B 1B 5R 4B 15B
/* 中序遍历 : 1B 2B 4B 5R 15B
/************************************************************************/
rbt_delete(T,8);
rbt_delete(T,14);rbt_delete(T,7);rbt_delete(T,11);
rbt_delete(T,8);//删除不存在的元素
rbt_print(T);
}