-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSqueezenet_1.0_Asgd.py
273 lines (238 loc) · 9.74 KB
/
Squeezenet_1.0_Asgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 4 23:05:06 2019
@author: iot
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.nn.init as init
import torch.utils.model_zoo as model_zoo
import numpy as np
import torchvision
import torchvision.transforms as transforms
import math
import sys
import time
import os
from livelossplot import PlotLosses
lrt = 0.1
start_epoch = 1
num_epochs = 200
batch_size = 128
best_acc = 0
criterion = nn.CrossEntropyLoss()
is_use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if is_use_cuda else "cpu")
# Data Preprocess
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
train_dataset = torchvision.datasets.CIFAR10(root='./train_data', transform=transform_train, train=True, download=True)
test_dataset = torchvision.datasets.CIFAR10(root='./test_data', transform=transform_test, train=False, download=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, num_workers=8, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=80, num_workers=8, shuffle=False)
class Fire(nn.Module):
def __init__(self, inplanes, squeeze_planes,
expand1x1_planes, expand3x3_planes):
super(Fire, self).__init__()
self.inplanes = inplanes
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
self.squeeze_activation = nn.ReLU(inplace=True)
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,
kernel_size=1)
self.expand1x1_activation = nn.ReLU(inplace=True)
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,
kernel_size=3, padding=1)
self.expand3x3_activation = nn.ReLU(inplace=True)
def forward(self, x):
x = self.squeeze_activation(self.squeeze(x))
return torch.cat([
self.expand1x1_activation(self.expand1x1(x)),
self.expand3x3_activation(self.expand3x3(x))
], 1)
class SqueezeNet(nn.Module):
def __init__(self, version=1.0, num_classes=10):
super(SqueezeNet, self).__init__()
if version not in [1.0, 1.1]:
raise ValueError("Unsupported SqueezeNet version {version}:"
"1.0 or 1.1 expected".format(version=version))
self.num_classes = num_classes
if version == 1.0:
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=7, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(96, 16, 64, 64),
Fire(128, 16, 64, 64),
Fire(128, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 32, 128, 128),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(512, 64, 256, 256),
)
else:
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(64, 16, 64, 64),
Fire(128, 16, 64, 64),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(128, 32, 128, 128),
Fire(256, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
Fire(512, 64, 256, 256),
)
# Final convolution is initialized differently form the rest
final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
final_conv,
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1))
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m is final_conv:
init.normal_(m.weight, mean=0.0, std=0.01)
else:
init.kaiming_uniform_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
return x.view(x.size(0), self.num_classes)
def squeezenet1_0(pretrained=False, **kwargs):
r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5MB model size"
<https://arxiv.org/abs/1602.07360>`_ paper.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = SqueezeNet(version=1.0, **kwargs)
return model
def squeezenet1_1(pretrained=False, **kwargs):
r"""SqueezeNet 1.1 model from the `official SqueezeNet repo
<https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
than SqueezeNet 1.0, without sacrificing accuracy.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = SqueezeNet(version=1.1, **kwargs)
return model
net = squeezenet1_0()
if is_use_cuda:
net.to(device)
net = nn.DataParallel(net, device_ids=range(torch.cuda.device_count()))
tmp = torch.randn(1, 3, 32, 32)
y = net(tmp)
#print(y, type(y), y.size())
def train(epoch):
global train_loss
global train_correct
global train_total
global optimizer
net.train()
train_loss = 0
train_correct = 0
train_total = 0
optimizer = optim.ASGD(net.parameters(), lr=lrt, weight_decay=5e-4)
print('Sqnet_1x_v1.0_ASGD Training Epoch: #%d, LR: %.4f'%(epoch, lrt))
for idx, (inputs, labels) in enumerate(train_loader):
if is_use_cuda:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predict = torch.max(outputs, 1)
train_total += labels.size(0)
train_correct += predict.eq(labels).cpu().sum().double()
sys.stdout.write('\r')
sys.stdout.write('[%s] Training Epoch [%d/%d] Iter[%d/%d]\t\tLoss: %.4f Tr_Acc: %.3f'
% (time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())),
epoch, num_epochs, idx, len(train_dataset) // batch_size,
train_loss / (batch_size * (idx + 1)), train_correct / train_total))
sys.stdout.flush()
def test(epoch):
global test_loss
global test_correct
global test_total
global best_acc
net.eval()
test_loss = 0
test_correct = 0
test_total = 0
for idx, (inputs, labels) in enumerate(test_loader):
if is_use_cuda:
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item()
_, predict = torch.max(outputs, 1)
test_total += labels.size(0)
test_correct += predict.eq(labels).cpu().sum().double()
sys.stdout.write('\r')
sys.stdout.write('[%s] Testing Epoch [%d/%d] Iter[%d/%d]\t\tLoss: %.4f Te_Acc: %.3f'
% (time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())),
epoch, num_epochs, idx, len(test_dataset) // 80,
test_loss / (100 * (idx + 1)), test_correct / test_total))
sys.stdout.flush()
if test_correct / test_total > best_acc:
print()
print('Saving Model...')
state = {
'net': net.module if is_use_cuda else net,
'net_state_dict': net.state_dict(),
# 'acc': test_correct / test_total,
# 'optimizer_state_dict': optimizer.state_dict()
}
if not os.path.isdir('./checkpoint/Sqnet_1x_v1.0_ASGD'):
os.makedirs('./checkpoint/Sqnet_1x_v1.0_ASGD')
torch.save(state, './checkpoint/Sqnet_1x_v1.0_ASGD/Sqnet_1x_v1.0_ASGD_Cifar10.ckpt')
best_acc = test_correct / test_total
# checkpoint = torch.load('./checkpoint/Sqnet_1x_v1.0/Sqnet_1x_v1.0_Cifar10.ckpt')
# net.load_state_dict(checkpoint['net_state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
liveloss = PlotLosses()
for _epoch in range(start_epoch, start_epoch + num_epochs):
start_time = time.time()
train(_epoch)
print()
test(_epoch)
print()
print()
end_time = time.time()
print('Epoch #%d Cost %ds' % (_epoch, end_time - start_time))
best_cost = end_time - start_time
if end_time - start_time < best_cost:
best_cost = end_time - start_time
liveloss.update({
'log loss': train_loss,
'val_log loss': test_loss,
'accuracy': train_correct,
'val_accuracy': test_correct
})
liveloss.draw()
print('Best Cost: %ds' % (best_cost))
print('Best Acc: %.4f percent' % (best_acc * 100))