diff --git a/python/rainbow/cuda/collision_detection/compute_contacts.py b/python/rainbow/cuda/collision_detection/compute_contacts.py index 0be6f2a..a4ad4d0 100644 --- a/python/rainbow/cuda/collision_detection/compute_contacts.py +++ b/python/rainbow/cuda/collision_detection/compute_contacts.py @@ -10,6 +10,14 @@ @cuda.jit(device=True) def xform_triangle_to_model_space_device(P, X, X0, P0): + """ Converts a world space triangle into the material space of a tetrahedron. + + Args: + P (float64[:]): The input triangle points in world space + X (float64[:, :]): The input tetrahedron corners in world space. + X0 (float64[:, :]): The input tetrahedron corners in material space. + P0 (float64[:]): The values are the triangle corner points in tetrahedron B's material coordinate space. + """ Matrix.mat33_zero(P0) w0 = cuda.local.array(4, dtype=float64) @@ -29,144 +37,192 @@ def xform_triangle_to_model_space_device(P, X, X0, P0): @cuda.jit(device=True) -def compute_omegaB_device(p, X0B, omegaB): - BC.compute_barycentric_tetrahedron_device(X0B[0], X0B[1], X0B[2], X0B[3], p, omegaB) +def compute_omega_device(p, X, omega): + """ Compute the barycentric coordinates for a point p of a tetrahedron - -@cuda.jit(device=True) -def compute_omegaA_device(p, XA, omegaA): - BC.compute_barycentric_tetrahedron_device(XA[0], XA[1], XA[2], XA[3], p, omegaA) + Args: + p (float64[:]): The contact point in the model space of a body + X (float64[:, :]): The corner points of a tetrahedron in world coordinates. + omega (float64[:]): the barycentric coordinates w1, w2, w3 and w4. + """ + BC.compute_barycentric_tetrahedron_device(X[0], X[1], X[2], X[3], p, omega) @cuda.jit(device=True) -def compute_p_device(p, XB, omegaB, result): +def compute_p_device(p, X, omega, result): + """ Compute the contact point in the world space of a body + + Args: + p (float64[:]): The contact point in the model space of a body + X (float64[:, :]): The corner points of a tetrahedron in world coordinates. + omega (float64[:]): the barycentric coordinates w1, w2, w3 and w4. + result (float64[:]): The contact point in the world space of a body + """ t = cuda.local.array((3, 4), dtype=float64) - Matrix.mat43_T(XB, t) - Matrix.mat34_dot_vec4(t, omegaB, result) + Matrix.mat43_T(X, t) + Matrix.mat34_dot_vec4(t, omega, result) @cuda.jit(device=True) -def compute_n_device(n, XB, X0B, result): +def compute_n_device(n, X, X0, result): + """ Compute the contact normal in the world space of a body + + Args: + n (float64[:]): The contact normal in the model space of a body + X (flaot64[:, :]): The corner points of a tetrahedron in world coordinates. + X0 (flaot64[:, :]): The corner points of a tetrahedron in material coordinates. + result (float64[:]): The contact normal in the world space of a body + """ D = cuda.local.array((3,3), dtype=float64) D0 = cuda.local.array((3, 3), dtype=float64) for i in range(3): for j in range(3): - D[i, j] = XB[i, j] - XB[3, j] - D0[i, j] = X0B[i, j] - X0B[3, j] + D[i, j] = X[i, j] - X[3, j] + D0[i, j] = X0[i, j] - X0[3, j] solve_res = cuda.local.array(3, dtype=float64) LinAlg.cramer_solver(D0, n, solve_res) Matrix.mat33_dot_vec3(D, solve_res, result) @cuda.jit(device=True) -def compute_contacts_device(idx_triA, idx_triB, A_owners, B_owners, A_x, B_x, B_x0, A_surface, A_T, B_T, B_grid_min_coord, B_grid_max_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, max_iteration, optimization_tolerance, envelope, boundary, result): - idx_tetA = A_owners[idx_triA][0] - idx_tetB = B_owners[idx_triB][0] +def compute_contacts_device( idx_triA, idx_triB, A_owners, B_owners, + A_x, B_x, B_x0, A_surface, A_T, B_T, + B_grid_min_coord, B_grid_max_coord, B_grid_spacing, + B_grid_I, B_grid_J, B_grid_K, B_grid_values, + max_iteration, optimization_tolerance, envelope, boundary, result): + """ Compute the contact points between a triangle and a tetrahedron. + + Args: + idx_triA (int32): The index of the triangle in the triangle array of body A. + idx_triB (int32): The index of the triangle in the triangle array of body B. + A_owners (dict): The dict of the tetrahedra of body A that own the triangle. + B_owners (dict): The dict of the tetrahedra of body B that own the triangle. + A_x (float64[:, :]): The vertices in deformed coordinates of body A. + B_x (float64[:, :]): The vertices in deformed coordinates of body B. + B_x0 (float64[:, :]): The vertices in material coordinates of body B. + A_surface (int32[:, :]): The indices of the vertices of the triangle of body A. + A_T (int32[:, :]): The indices of the vertices of the tetrahedra of body A. + B_T (int32[:, :]): The indices of the vertices of the tetrahedra of body B. + B_grid_min_coord (float64): The minimum coordinate of the grid of body B. + B_grid_max_coord (float64): The maximum coordinate of the grid of body B. + B_grid_spacing (float64[:]): The spacing of the grid of body B. + B_grid_I (int32): The number of cells in the x-direction of the grid. + B_grid_J (int32): The number of cells in the y-direction of the grid. + B_grid_K (int32): The number of cells in the z-direction of the grid. + B_grid_values (float64[:]): It is an array storing signed distances of grid points to a given mesh. + max_iteration (int32): Maximum number of Gauss-Seidel iterations. + optimization_tolerance (float64): The tolerance for the frank wolfe collision detection algorithm. + envelope (float64): Any geometry within this distance generates a contact point. + boundary (float64): The boundary width. This specifies how far inside the grid bounding box the point has to be to be considered inside. + result (dcit): The data of the contact point computation for creating a ContactPoint instance on CPU. + """ + idx_tetA = A_owners[idx_triA][0] + idx_tetB = B_owners[idx_triB][0] + + P = cuda.local.array((3, 3), dtype=float64) + XB = cuda.local.array((4, 3), dtype=float64) + X0B = cuda.local.array((4, 3), dtype=float64) + + surface_indices = A_surface[idx_triA] + for j in range(3): + for k in range(3): + P[j, k] = A_x[surface_indices[j], k] + + tet_indices = B_T[idx_tetB] + for j in range(4): + for k in range(3): + XB[j, k] = B_x[tet_indices[j], k] + X0B[j, k] = B_x0[tet_indices[j], k] + + P0 = cuda.local.array((3, 3), dtype=float64) + xform_triangle_to_model_space_device(P, XB, X0B, P0) + + gradient_norms = cuda.local.array(3, dtype=float64) + gradient0 = cuda.local.array(3, float64) + gradient1 = cuda.local.array(3, float64) + gradient2 = cuda.local.array(3, float64) + + Grid3.get_gradient_device(P0[0], B_grid_min_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, gradient0) + Grid3.get_gradient_device(P0[1], B_grid_min_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, gradient1) + Grid3.get_gradient_device(P0[2], B_grid_min_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, gradient2) + + gradient_norms[0] = Vector.vec3_norm(gradient0) + gradient_norms[1] = Vector.vec3_norm(gradient1) + gradient_norms[2] = Vector.vec3_norm(gradient2) + + x_i = cuda.local.array(3, dtype=float64) + for i in range(3): + x_i[i] = P0[Vector.argmin(gradient_norms, 3)][i] - P = cuda.local.array((3, 3), dtype=float64) - XB = cuda.local.array((4, 3), dtype=float64) - X0B = cuda.local.array((4, 3), dtype=float64) + for i in range(max_iteration): + t = cuda.local.array(3, dtype=float64) + Grid3.get_gradient_device(x_i, B_grid_min_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, t) - surface_indices = A_surface[idx_triA] + objectives = cuda.local.array(3, dtype=float64) for j in range(3): - for k in range(3): - P[j, k] = A_x[surface_indices[j], k] - - tet_indices = B_T[idx_tetB] - for j in range(4): - for k in range(3): - XB[j, k] = B_x[tet_indices[j], k] - X0B[j, k] = B_x0[tet_indices[j], k] - - P0 = cuda.local.array((3, 3), dtype=float64) - xform_triangle_to_model_space_device(P, XB, X0B, P0) - - gradient_norms = cuda.local.array(3, dtype=float64) - gradient0 = cuda.local.array(3, float64) - gradient1 = cuda.local.array(3, float64) - gradient2 = cuda.local.array(3, float64) - - Grid3.get_gradient_device(P0[0], B_grid_min_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, gradient0) - Grid3.get_gradient_device(P0[1], B_grid_min_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, gradient1) - Grid3.get_gradient_device(P0[2], B_grid_min_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, gradient2) - - gradient_norms[0] = Vector.vec3_norm(gradient0) - gradient_norms[1] = Vector.vec3_norm(gradient1) - gradient_norms[2] = Vector.vec3_norm(gradient2) - - x_i = cuda.local.array(3, dtype=float64) - for i in range(3): - x_i[i] = P0[Vector.argmin(gradient_norms, 3)][i] - - for i in range(max_iteration): - t = cuda.local.array(3, dtype=float64) - Grid3.get_gradient_device(x_i, B_grid_min_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, t) - - objectives = cuda.local.array(3, dtype=float64) - for j in range(3): - objectives[j] = Vector.vec3_dot(P0[j], t) + objectives[j] = Vector.vec3_dot(P0[j], t) - vertex = Vector.argmin(objectives, 3) - s_i = P0[vertex] - alpha = 2 / (i + 2) + vertex = Vector.argmin(objectives, 3) + s_i = P0[vertex] + alpha = 2 / (i + 2) - sx_sub = cuda.local.array(3, dtype=float64) - Vector.vec3_sub(s_i, x_i, sx_sub) + sx_sub = cuda.local.array(3, dtype=float64) + Vector.vec3_sub(s_i, x_i, sx_sub) - sx_sub_alpha = cuda.local.array(3, dtype=float64) - Vector.vec3_mut_scalar(sx_sub, alpha, sx_sub_alpha) + sx_sub_alpha = cuda.local.array(3, dtype=float64) + Vector.vec3_mut_scalar(sx_sub, alpha, sx_sub_alpha) - x_i_new = cuda.local.array(3, dtype=float64) - Vector.vec3_add(x_i, sx_sub_alpha, x_i_new) + x_i_new = cuda.local.array(3, dtype=float64) + Vector.vec3_add(x_i, sx_sub_alpha, x_i_new) - for j in range(3): - x_i[j] = x_i_new[j] + for j in range(3): + x_i[j] = x_i_new[j] - if objectives[vertex] > optimization_tolerance: - break + if objectives[vertex] > optimization_tolerance: + break # contact point generation - if Grid3.is_inside_device(x_i, B_grid_min_coord, B_grid_max_coord, 0.5): - phi = Grid3.get_value_device(x_i, B_grid_min_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values) - if phi < envelope: - gap = phi - n_res = cuda.local.array(3, dtype=float64) - Grid3.get_gradient_device(x_i, B_grid_min_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, n_res) - if Vector.vec3_norm(n_res) > 0: - XA = cuda.local.array((4, 3), dtype=float64) - indices = A_T[idx_tetA] - for i in range(4): - for j in range(3): - XA[i][j] = A_x[indices[i], j] + if Grid3.is_inside_device(x_i, B_grid_min_coord, B_grid_max_coord, 0.5): + phi = Grid3.get_value_device(x_i, B_grid_min_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values) + if phi < envelope: + gap = phi + n_res = cuda.local.array(3, dtype=float64) + Grid3.get_gradient_device(x_i, B_grid_min_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, n_res) + if Vector.vec3_norm(n_res) > 0: + XA = cuda.local.array((4, 3), dtype=float64) + indices = A_T[idx_tetA] + for i in range(4): + for j in range(3): + XA[i][j] = A_x[indices[i], j] - omegaB = cuda.local.array(4, dtype=float64) - compute_omegaB_device(x_i, X0B, omegaB) - p = cuda.local.array(3, dtype=float64) - compute_p_device(x_i, XB, omegaB, p) - omegaA = cuda.local.array(4, dtype=float64) - compute_omegaA_device(p, XA, omegaA) - n_res_new = cuda.local.array(3, dtype=float64) - compute_n_device(n_res, XB, X0B, n_res_new) - unit_n = cuda.local.array(3, dtype=float64) - Vector.vec3_unit(n_res_new, unit_n) - - result['idx_tetB'] = idx_tetB - result['idx_tetA'] = idx_tetA - result['omegaB'] = omegaB - result['omegaA'] = omegaA - result['p'] = p - result['unit_n'] = unit_n - result['gap'] = gap - - else: - result['idx_tetB'] = -3 - result['idx_tetA'] = -3 + omegaB = cuda.local.array(4, dtype=float64) + compute_omega_device(x_i, X0B, omegaB) + p = cuda.local.array(3, dtype=float64) + compute_p_device(x_i, XB, omegaB, p) + omegaA = cuda.local.array(4, dtype=float64) + compute_omega_device(p, XA, omegaA) + n_res_new = cuda.local.array(3, dtype=float64) + compute_n_device(n_res, XB, X0B, n_res_new) + unit_n = cuda.local.array(3, dtype=float64) + Vector.vec3_unit(n_res_new, unit_n) + + result['idx_tetB'] = idx_tetB + result['idx_tetA'] = idx_tetA + result['omegaB'] = omegaB + result['omegaA'] = omegaA + result['p'] = p + result['unit_n'] = unit_n + result['gap'] = gap + else: - result['idx_tetB'] = -2 - result['idx_tetA'] = -2 + result['idx_tetB'] = -1 + result['idx_tetA'] = -1 else: result['idx_tetB'] = -1 result['idx_tetA'] = -1 + else: + result['idx_tetB'] = -1 + result['idx_tetA'] = -1 @cuda.jit(lineinfo=True) @@ -176,6 +232,30 @@ def contact_points_computing_kernel( d_bodyA_idxs, d_bodyB_idxs, d_overlaps, d_B_grid_min_coords, d_B_grid_max_coords, d_B_grid_spacings, d_B_grid_Is, d_B_grid_Js, d_B_grid_Ks, max_iterations, tolerance, envelope, boundary, result_gpu): + """ This a kernel function for computing contact points between a triangle and a tetrahedron. + + Args: + d_B_values (float64[:, :]): It is an array storing signed distances of grid points to a given mesh. + d_A_owners (list(dict)): The dict of the tetrahedra of body A that own the triangle. + d_B_owners (list(dict)): The dict of the tetrahedra of body B that own the triangle. + d_A_xs (float64[:, :, :]): The vertices in deformed coordinates of body A. + d_B_xs (float64[:, :, :]): The vertices in deformed coordinates of body B. + d_B_x0s (float64[:, :, :]): The vertices in material coordinates of body B. + d_A_surfaces (float64[:]): The indices of the vertices of the triangle of body A. + d_A_Ts (int32[:, :]): The indices of the vertices of the tetrahedra of body A. + d_B_Ts (int32[:, :]): The indices of the vertices of the tetrahedra of body B. + d_B_grid_min_coords (_type_): The minimum coordinate of the grid of body B. + d_B_grid_max_coords (float64[:]): The maximum coordinate of the grid of body B. + d_B_grid_spacings (float64[:]): The spacing of the grid of body B. + d_B_grid_Is (int32[:]): The number of cells in the x-direction of the grid. + d_B_grid_Js (int32[:]): The number of cells in the y-direction of the grid. + d_B_grid_Ks (int32[:]): The number of cells in the z-direction of the grid. + max_iterations (int32): Maximum number of Gauss-Seidel iterations. + tolerance (float64): Maximum number of Gauss-Seidel iterations. + envelope (float64): Any geometry within this distance generates a contact point. + boundary (float64): The boundary width. This specifies how far inside the grid bounding box the point has to be to be considered inside. + result_gpu (list(dict)): The data of the contact point computation for creating a ContactPoint instance on CPU. + """ gid = cuda.grid(1) if gid < d_overlaps.shape[0]: @@ -197,10 +277,5 @@ def contact_points_computing_kernel( d_bodyA_idxs, d_bodyB_idxs, d_overlaps, B_grid_I = d_B_grid_Is[gid] B_grid_J = d_B_grid_Js[gid] B_grid_K = d_B_grid_Ks[gid] - - - ## Those data maybe need to tansform to Shared Memory, but I just test two small bodies in scene, those data size total is over 30KB except the 'grid_values', and the 'grid_values' is over 4MB. Those data size is too large to put in Shared Memory. Maybe we need to consider other ways to optimize this. - - - compute_contacts_device(idx_triA, idx_triB, A_owners, B_owners, A_x, B_x, B_x0, A_surface, A_T, B_T, B_grid_min_coord, B_grid_max_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, max_iterations, tolerance, envelope, boundary, result_gpu[gid]) + compute_contacts_device(idx_triA, idx_triB, A_owners, B_owners, A_x, B_x, B_x0, A_surface, A_T, B_T, B_grid_min_coord, B_grid_max_coord, B_grid_spacing, B_grid_I, B_grid_J, B_grid_K, B_grid_values, max_iterations, tolerance, envelope, boundary, result_gpu[gid]) \ No newline at end of file diff --git a/python/rainbow/simulators/prox_soft_bodies/collision_detection.py b/python/rainbow/simulators/prox_soft_bodies/collision_detection.py index 20f2135..4e41015 100644 --- a/python/rainbow/simulators/prox_soft_bodies/collision_detection.py +++ b/python/rainbow/simulators/prox_soft_bodies/collision_detection.py @@ -243,6 +243,15 @@ def _compute_contacts(engine, stats, bodyA, bodyB, results, debug_on): def _uniform_padding(listss, padding_value): + """ Pad the listss to the same length, means that the length of each sub list is the same. + + Args: + listss (List[List]): A nested list. + padding_value (DataType): A padding value, which is used to pad the list. + + Returns: + List[List]: the padded listss, which has the same length of each sub list. + """ valid_lists = [l for l in listss if l is not None] if len(valid_lists) == 0: @@ -258,6 +267,15 @@ def _uniform_padding(listss, padding_value): def _assemble_body_data_to_gpu(data_lists, bodyA, bodyB, triA, triB): + """ Assemble body data to a data list for GPU computing. + + Args: + data_lists (List): The data list for GPU computing. + bodyA (SoftBody): A SofyBody instance. + bodyB (SoftBody): A SofyBody instance. + triA (int): The index of triangle in bodyA. + triB (int): The index of triangle in bodyB. + """ data_lists['bodyA_idxs'].append(bodyA.idx) data_lists['bodyB_idxs'].append(bodyB.idx) data_lists['overlap_results'].append((triA, triB)) @@ -277,14 +295,21 @@ def _assemble_body_data_to_gpu(data_lists, bodyA, bodyB, triA, triB): data_lists['B_grid_Js'].append(bodyB.grid.J) data_lists['B_grid_Ks'].append(bodyB.grid.K) + def _contact_point_gpu(overlaps, engine, stats, debug_on): + """ The GPU version of contact point computing, it flattens the data and send to GPU, then call the kernel function. - contact_optimization_timer = None - model_space_update_timer = None + Args: + overlaps (dict): A dictionary of triangles from one body that overlaps another body. + engine (Engine): The current engine instance we are working with. + stats (dict): A dictionary where to add more profiling and timing measurements. + debug_on (bool): Boolean flag for toggling debug (aka profiling) info on and off. + + Returns: + dict: A dictionary with profiling and timing measurements. + """ contact_point_generation_timer = None if debug_on: - # model_space_update_timer = Timer("model_space_update") - # contact_optimization_timer = Timer("contact_optimization") contact_point_generation_timer = Timer("contact_point_generation") data_lists = { @@ -348,14 +373,17 @@ def _contact_point_gpu(overlaps, engine, stats, debug_on): 'B_grid_Ks': np.int32 } + # copy data to GPU d_data = {} for key, data in data_lists.items(): array_data = np.array(data, dtype=type_map.get(key)) d_data[f'd_{key}'] = cuda.to_device(array_data) + # setting up GPU computing (grid and block) threads_per_block = engine.params.gpu_grid_size blocks_per_grid = (data_length + threads_per_block - 1) // threads_per_block + # setting up result from GPU (data type and size) result_dtype = np.dtype([ ('idx_tetB', np.int32), ('idx_tetA', np.int32), @@ -367,6 +395,7 @@ def _contact_point_gpu(overlaps, engine, stats, debug_on): ]) result_gpu = cuda.device_array(data_length, dtype=result_dtype) + # call GPU kernel function CUDA_COMPUTE_CONTACTS.contact_points_computing_kernel[blocks_per_grid, threads_per_block]( d_data['d_bodyA_idxs'], d_data['d_bodyB_idxs'], d_data['d_overlap_results'], d_data['d_B_values'], d_data['d_A_owners'], d_data['d_B_owners'], @@ -378,8 +407,9 @@ def _contact_point_gpu(overlaps, engine, stats, debug_on): engine.params.contact_optimization_tolerance, engine.params.envelope, 0.5, result_gpu) - cuda.synchronize() ## wait for GPU data - result_to_cpu = result_gpu.copy_to_host() ## copy GPU data to CPU + # wait for GPU data and copy to CPU + cuda.synchronize() + result_to_cpu = result_gpu.copy_to_host() ## generate contact points for res in result_to_cpu: @@ -394,12 +424,6 @@ def _contact_point_gpu(overlaps, engine, stats, debug_on): engine.contact_points.append(cp) if debug_on: - # if "model_space_update" not in stats: - # stats["model_space_update"] = 0 - # stats["model_space_update"] += model_space_update_timer.total - # if "contact_optimization" not in stats: - # stats["contact_optimization"] = 0 - # stats["contact_optimization"] += contact_optimization_timer.total if "contact_point_generation" not in stats: stats["contact_point_generation"] = 0 stats["contact_point_generation"] += contact_point_generation_timer.total @@ -430,8 +454,9 @@ def _contact_determination(overlaps, engine, stats, debug_on): if debug_on: contact_determination_timer.end() stats["contact_determination"] = contact_determination_timer.elapsed - return stats + + # contact points computing on CPU, if GPU is not available or the flag is Flase for key, results in overlaps.items(): # TODO 2022-12-31 Kenny: The code currently computes a lot of redundant contacts due # to BVH traversal may return a triangle as part of several pairs. We only need diff --git a/python/rainbow/simulators/prox_soft_bodies/types.py b/python/rainbow/simulators/prox_soft_bodies/types.py index 92e186f..2fb5884 100644 --- a/python/rainbow/simulators/prox_soft_bodies/types.py +++ b/python/rainbow/simulators/prox_soft_bodies/types.py @@ -252,7 +252,7 @@ def __init__(self): 0.1 # Any geometry within this distance generates a contact point. ) self.resolution = 64 # The number of grid cells along each axis in the signed distance fields. - self.use_gpu = True # Boolean flag that indicates if we should use the GPU or not. + self.use_gpu = False # Boolean flag that indicates if we should use the GPU or not. self.gpu_grid_size = 256 # The number of threads per block to use on the GPU. diff --git a/python/unit_tests/test_cuda_geometry_barycentric.py b/python/unit_tests/test_cuda_geometry_barycentric.py index e54be9d..4188ba2 100644 --- a/python/unit_tests/test_cuda_geometry_barycentric.py +++ b/python/unit_tests/test_cuda_geometry_barycentric.py @@ -11,6 +11,7 @@ import rainbow.cuda.unit_tests.test_geometry_barycentric_kernel as TEST_BCK +@unittest.skipIf(not cuda.is_available(), "CUDA not available") class TestGrid3Cuda(unittest.TestCase): def test_compute_barycentric_tetrahedron(self): diff --git a/python/unit_tests/test_cuda_geometry_grid3.py b/python/unit_tests/test_cuda_geometry_grid3.py index 726c3ac..288aec9 100644 --- a/python/unit_tests/test_cuda_geometry_grid3.py +++ b/python/unit_tests/test_cuda_geometry_grid3.py @@ -11,6 +11,7 @@ import rainbow.cuda.unit_tests.test_geometry_grid3_kernel as TEST_GRID3K +@unittest.skipIf(not cuda.is_available(), "CUDA not available") def simpelfunc(coord): _, _, z = coord[0], coord[1], coord[2] return z diff --git a/python/unit_tests/test_cuda_math_linalg.py b/python/unit_tests/test_cuda_math_linalg.py index abce04e..238426c 100644 --- a/python/unit_tests/test_cuda_math_linalg.py +++ b/python/unit_tests/test_cuda_math_linalg.py @@ -10,6 +10,7 @@ import rainbow.util.test_tools as TEST +@unittest.skipIf(not cuda.is_available(), "CUDA not available") class TestLinAlgCuda(unittest.TestCase): def test_cramer_solver(self): diff --git a/python/unit_tests/test_cuda_math_matrix.py b/python/unit_tests/test_cuda_math_matrix.py index e5bc91e..679c076 100644 --- a/python/unit_tests/test_cuda_math_matrix.py +++ b/python/unit_tests/test_cuda_math_matrix.py @@ -10,6 +10,7 @@ import rainbow.cuda.unit_tests.test_math_matrix_kernel as TEST_MK +@unittest.skipIf(not cuda.is_available(), "CUDA not available") class TestMatrixCuda(unittest.TestCase): def test_mat33_T(self): diff --git a/python/unit_tests/test_cuda_math_vec.py b/python/unit_tests/test_cuda_math_vec.py index 31ff070..75687f3 100644 --- a/python/unit_tests/test_cuda_math_vec.py +++ b/python/unit_tests/test_cuda_math_vec.py @@ -10,6 +10,7 @@ import rainbow.util.test_tools as TEST +@unittest.skipIf(not cuda.is_available(), "CUDA not available") class TestVec3Cuda(unittest.TestCase): def test_vec3_add(self):