-
Notifications
You must be signed in to change notification settings - Fork 292
/
demo_mann_whitney.py
54 lines (45 loc) · 1.61 KB
/
demo_mann_whitney.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import scattertext as st
'''
convention_df = st.SampleCorpora.ConventionData2012.get_data()
corpus = (st.CorpusFromPandas(convention_df,
category_col='party',
text_col='text',
nlp=st.whitespace_nlp_with_sentences)
.build()
.get_unigram_corpus())
term_scorer = st.MannWhitneyU(corpus).set_categories('democrat', ['republican'])
html = st.produce_frequency_explorer(
corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
y_label='Mann Whitney FDR-BH Z',
scores=term_scorer.get_score_df('fdr_bh').mwu_z,
metadata=convention_df['speaker'],
grey_threshold=0
)
file_name = 'demo_mann_whitney.html'
open(file_name, 'wb').write(html.encode('utf-8'))
print('Open %s in Chrome or Firefox.' % file_name)
'''
movie_df = st.SampleCorpora.RottenTomatoes.get_data()
corpus = st.CorpusFromPandas(
movie_df,
category_col='category',
text_col='text',
nlp=st.whitespace_nlp_with_sentences
).build()
corpus = corpus.get_unigram_corpus()
score_df = st.MannWhitneyU(corpus).set_categories('plot', ['fresh', 'rotten']).get_score_df('fdr_bh')
print(score_df.sort_values(by='mwu_z', ascending=False).head())
print(score_df.sort_values(by='mwu_z', ascending=False).tail())
html = st.produce_frequency_explorer(
corpus,
category='plot',
y_label='Mann Whitney FDR-BH Z',
scores=score_df.mwu_z,
grey_threshold=0
)
file_name = 'demo_mann_whitney.html'
open(file_name, 'wb').write(html.encode('utf-8'))
print('Open %s in Chrome or Firefox.' % file_name)