-
Notifications
You must be signed in to change notification settings - Fork 292
/
Copy pathdemo_gensim_similarity.py
56 lines (52 loc) · 2.27 KB
/
demo_gensim_similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import spacy
from gensim.models import word2vec
from scattertext import whitespace_nlp_with_sentences
from scattertext import SampleCorpora, word_similarity_explorer_gensim, Word2VecFromParsedCorpus
from scattertext.CorpusFromParsedDocuments import CorpusFromParsedDocuments
from scattertext.termsignificance.ScaledFScoreSignificance import ScaledFScoreSignificance
def main():
nlp = spacy.load('en_core_web_sm')
# nlp = whitespace_nlp_with_sentences
convention_df = SampleCorpora.ConventionData2012.get_data()
convention_df['parsed'] = convention_df.text.apply(nlp)
corpus = (CorpusFromParsedDocuments(convention_df,
category_col='party',
parsed_col='parsed')
.build()
.get_unigram_corpus())
model = word2vec.Word2Vec(vector_size=100,
alpha=0.025,
window=5,
min_count=5,
max_vocab_size=None,
sample=0,
seed=1,
workers=1,
min_alpha=0.0001,
sg=1,
hs=1,
negative=0,
cbow_mean=0,
null_word=0,
trim_rule=None,
sorted_vocab=1)
html = word_similarity_explorer_gensim(
corpus,
category='democrat',
target_term='jobs',
category_name='Democratic',
not_category_name='Republican',
minimum_term_frequency=5,
width_in_pixels=1000,
metadata=convention_df['speaker'],
word2vec=Word2VecFromParsedCorpus(corpus, model).train(),
term_significance=ScaledFScoreSignificance(),
max_p_val=0.05,
save_svg_button=True,
d3_url='scattertext/data/viz/scripts/d3.min.js',
d3_scale_chromatic_url='scattertext/data/viz/scripts/d3-scale-chromatic.v1.min.js'
)
open('./demo_gensim_similarity.html', 'wb').write(html.encode('utf-8'))
print('Open ./demo_gensim_similarity.html in Chrome or Firefox.')
if __name__ == '__main__':
main()