-
Notifications
You must be signed in to change notification settings - Fork 292
/
demo_emoji.py
54 lines (47 loc) · 1.7 KB
/
demo_emoji.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import io
from zipfile import ZipFile
import agefromname
import nltk
import pandas as pd
import urllib.request
import scattertext as st
from scattertext.termranking import OncePerDocFrequencyRanker
try:
print("Downloading tweet dataset")
df_mf = pd.read_csv('emoji_data.csv')
except:
print("Downloading tweet dataset")
with ZipFile(io.BytesIO(urllib.request.urlopen(
'http://followthehashtag.com/content/uploads/USA-Geolocated-tweets-free-dataset-Followthehashtag.zip'
).read())) as zf:
df = pd.read_excel(zf.open('dashboard_x_usa_x_filter_nativeretweets.xlsx'))
df['first_name'] = df['User Name'].apply(
lambda x: x.split()[0].lower() if type(x) == str and len(x.split()) > 0 else x)
male_prob = agefromname.AgeFromName().get_all_name_male_prob()
df_aug = pd.merge(df, male_prob, left_on='first_name', right_index=True)
df_aug['gender'] = df_aug['prob'].apply(lambda x: 'm' if x > 0.9 else 'f' if x < 0.1 else '?')
df_mf = df_aug[df_aug['gender'].isin(['m', 'f'])]
df_mf.to_csv('emoji_data.csv', index=False)
nlp = st.tweet_tokenizier_factory(nltk.tokenize.TweetTokenizer())
df_mf['parse'] = df_mf['Tweet content'].apply(nlp)
corpus = st.CorpusFromParsedDocuments(
df_mf,
parsed_col='parse',
category_col='gender',
feats_from_spacy_doc=st.FeatsFromSpacyDocOnlyEmoji()
).build()
html = st.produce_scattertext_explorer(
corpus,
category='f',
category_name='Female',
not_category_name='Male',
use_full_doc=True,
term_ranker=OncePerDocFrequencyRanker,
sort_by_dist=False,
metadata=(df_mf['User Name']
+ ' (@' + df_mf['Nickname'] + ') '
+ df_mf['Date'].astype(str)),
width_in_pixels=1000
)
print('writing EmojiGender.html')
open("EmojiGender.html", 'wb').write(html.encode('utf-8'))