|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "### P.S.\n", |
| 8 | + "* here we not focus on pursuing a higher F1 score, but give a quick example for how to set the model, so we set all the model hyper-parameters to a quite simple level to make the run faster.\n", |
| 9 | + "* you need to modify the config.py to create a more robust model." |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": 1, |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "import warnings\n", |
| 19 | + "warnings.filterwarnings('ignore')\n", |
| 20 | + "import tensorflow as tf\n", |
| 21 | + "import numpy as np" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": 6, |
| 27 | + "metadata": {}, |
| 28 | + "outputs": [], |
| 29 | + "source": [ |
| 30 | + "# import libs\n", |
| 31 | + "from model import Model\n", |
| 32 | + "tf.reset_default_graph()\n", |
| 33 | + "from utils import get_idx, get_inputs\n", |
| 34 | + "from config import Config" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "markdown", |
| 39 | + "metadata": {}, |
| 40 | + "source": [ |
| 41 | + "# GloVe" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": 7, |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [ |
| 49 | + { |
| 50 | + "name": "stdout", |
| 51 | + "output_type": "stream", |
| 52 | + "text": [ |
| 53 | + "2019-03-26 17:14:45,310 config object Initialized\n", |
| 54 | + "Building vocab...\n", |
| 55 | + "vocabulary for this corpus: 12447 tokens, 85 chars, 8 labels\n", |
| 56 | + "vocabulary construction time: 7.563478005002253\n" |
| 57 | + ] |
| 58 | + } |
| 59 | + ], |
| 60 | + "source": [ |
| 61 | + "# setting the embedding file path\n", |
| 62 | + "from config_examples.config_glove import Config\n", |
| 63 | + "config = Config('glove')\n", |
| 64 | + "glove_file_path = 'data/glove/glove.6B.100d.txt'\n", |
| 65 | + "# where to save the predictions, model, index files\n", |
| 66 | + "save_path = 'test/glove_test/'\n", |
| 67 | + "config.init_glove(glove_file_path, save_path)\n", |
| 68 | + "\n", |
| 69 | + "# parse the corpus and generate the input data\n", |
| 70 | + "token2idx, char2idx, label2idx, lookup_table = get_idx(config)\n", |
| 71 | + "train_x, train_y = get_inputs('train', token2idx, char2idx, label2idx, config)\n", |
| 72 | + "eval_x, eval_y = get_inputs('eval', token2idx, char2idx, label2idx, config)\n", |
| 73 | + "test_x, test_y = get_inputs('test', token2idx, char2idx, label2idx, config)" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "code", |
| 78 | + "execution_count": 8, |
| 79 | + "metadata": { |
| 80 | + "scrolled": false |
| 81 | + }, |
| 82 | + "outputs": [ |
| 83 | + { |
| 84 | + "name": "stdout", |
| 85 | + "output_type": "stream", |
| 86 | + "text": [ |
| 87 | + "2019-03-26 17:14:56,611 Initializing tf session\n", |
| 88 | + "2019-03-26 17:14:56,848 Epoch 1 out of 5\n", |
| 89 | + "2019-03-26 17:15:12,391 Epoch 1 's F1 =31.139110311133965, epoch_runing_time =15.541498899459839 .\n", |
| 90 | + "2019-03-26 17:15:12,393 - new best F1, save new model.\n", |
| 91 | + "2019-03-26 17:15:12,782 Epoch 2 out of 5\n", |
| 92 | + "2019-03-26 17:15:26,976 Epoch 2 's F1 =62.235889296696755, epoch_runing_time =14.19306468963623 .\n", |
| 93 | + "2019-03-26 17:15:26,978 - new best F1, save new model.\n", |
| 94 | + "2019-03-26 17:15:27,249 Epoch 3 out of 5\n", |
| 95 | + "2019-03-26 17:15:40,412 Epoch 3 's F1 =71.09647058823529, epoch_runing_time =13.162132740020752 .\n", |
| 96 | + "2019-03-26 17:15:40,414 - new best F1, save new model.\n", |
| 97 | + "2019-03-26 17:15:40,674 Epoch 4 out of 5\n", |
| 98 | + "2019-03-26 17:15:54,906 Epoch 4 's F1 =75.21691973969631, epoch_runing_time =14.231114149093628 .\n", |
| 99 | + "2019-03-26 17:15:54,908 - new best F1, save new model.\n", |
| 100 | + "2019-03-26 17:15:55,156 Epoch 5 out of 5\n", |
| 101 | + "2019-03-26 17:16:09,319 Epoch 5 's F1 =77.59048970901348, epoch_runing_time =14.161910057067871 .\n", |
| 102 | + "2019-03-26 17:16:09,321 - new best F1, save new model.\n", |
| 103 | + "2019-03-26 17:16:14,425 processed 51363 tokens with 5942 phrases; found: 5330 phrases; correct: 4373.\n", |
| 104 | + "accuracy: 95.51%; precision: 82.05%; recall: 73.59%; FB1: 77.59\n", |
| 105 | + " LOC: precision: 82.74%; recall: 84.54%; FB1: 83.63 1877\n", |
| 106 | + " MISC: precision: 75.70%; recall: 49.67%; FB1: 59.99 605\n", |
| 107 | + " ORG: precision: 75.76%; recall: 53.84%; FB1: 62.95 953\n", |
| 108 | + " PER: precision: 86.54%; recall: 89.03%; FB1: 87.77 1895\n", |
| 109 | + "\n", |
| 110 | + "2019-03-26 17:16:18,860 processed 46436 tokens with 5648 phrases; found: 5110 phrases; correct: 3898.\n", |
| 111 | + "accuracy: 94.37%; precision: 76.28%; recall: 69.02%; FB1: 72.47\n", |
| 112 | + " LOC: precision: 73.71%; recall: 76.80%; FB1: 75.22 1738\n", |
| 113 | + " MISC: precision: 67.84%; recall: 46.58%; FB1: 55.24 482\n", |
| 114 | + " ORG: precision: 72.91%; recall: 52.98%; FB1: 61.37 1207\n", |
| 115 | + " PER: precision: 83.78%; recall: 87.20%; FB1: 85.45 1683\n", |
| 116 | + "\n" |
| 117 | + ] |
| 118 | + } |
| 119 | + ], |
| 120 | + "source": [ |
| 121 | + "# initial the same NER model \n", |
| 122 | + "ner_model = Model(config)\n", |
| 123 | + "ner_model.build_graph()\n", |
| 124 | + "ner_model.initialize_session()\n", |
| 125 | + "\n", |
| 126 | + "# training and test\n", |
| 127 | + "ner_model.train(train_x,train_y,eval_x,eval_y)\n", |
| 128 | + "ner_model.test(eval_x,eval_y, 'eval')\n", |
| 129 | + "ner_model.test(test_x,test_y, 'test')\n", |
| 130 | + "ner_model.close()\n", |
| 131 | + "tf.reset_default_graph()" |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "markdown", |
| 136 | + "metadata": {}, |
| 137 | + "source": [ |
| 138 | + "# w2v" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": 15, |
| 144 | + "metadata": {}, |
| 145 | + "outputs": [], |
| 146 | + "source": [ |
| 147 | + "# setting the embedding file path\n", |
| 148 | + "from config_examples.config_w2v import Config\n", |
| 149 | + "from gensim.models import KeyedVectors\n", |
| 150 | + "config = Config('w2v')\n", |
| 151 | + "path =\"data/GoogleNews-vectors-negative300.bin\"\n", |
| 152 | + "w2v = KeyedVectors.load_word2vec_format(path, binary=True)\n", |
| 153 | + "config.init_w2v(w2v)\n", |
| 154 | + "\n", |
| 155 | + "# parse the corpus and generate the input data\n", |
| 156 | + "token2idx, char2idx, label2idx, lookup_table = get_idx(config)\n", |
| 157 | + "train_x, train_y = get_inputs('train', token2idx, char2idx, label2idx, config)\n", |
| 158 | + "eval_x, eval_y = get_inputs('eval', token2idx, char2idx, label2idx, config)\n", |
| 159 | + "test_x, test_y = get_inputs('test', token2idx, char2idx, label2idx, config)\n", |
| 160 | + "\n", |
| 161 | + "# initial the same NER model \n", |
| 162 | + "ner_model = Model(config)\n", |
| 163 | + "ner_model.build_graph()\n", |
| 164 | + "ner_model.initialize_session()" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "code", |
| 169 | + "execution_count": 14, |
| 170 | + "metadata": {}, |
| 171 | + "outputs": [], |
| 172 | + "source": [ |
| 173 | + "# training and test\n", |
| 174 | + "ner_model.train(train_x,train_y,eval_x,eval_y)\n", |
| 175 | + "ner_model.test(eval_x,eval_y, 'eval')\n", |
| 176 | + "ner_model.test(test_x,test_y, 'test')\n", |
| 177 | + "ner_model.close()\n", |
| 178 | + "tf.reset_default_graph()" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "code", |
| 183 | + "execution_count": null, |
| 184 | + "metadata": {}, |
| 185 | + "outputs": [], |
| 186 | + "source": [] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "markdown", |
| 190 | + "metadata": {}, |
| 191 | + "source": [ |
| 192 | + "# Fasttext" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "code", |
| 197 | + "execution_count": 12, |
| 198 | + "metadata": {}, |
| 199 | + "outputs": [], |
| 200 | + "source": [ |
| 201 | + "# setting the embedding file path\n", |
| 202 | + "from config_examples.config_fasttext import Config\n", |
| 203 | + "config = Config('fasttext')\n", |
| 204 | + "command ='../fastText/fasttext'\n", |
| 205 | + "bin_file ='../fastText/data/cc.en.300.bin'\n", |
| 206 | + "config.init_fasttext(command, bin_file)\n", |
| 207 | + "\n", |
| 208 | + "# parse the corpus and generate the input data\n", |
| 209 | + "token2idx, char2idx, label2idx, lookup_table = get_idx(config)\n", |
| 210 | + "train_x, train_y = get_inputs('train', token2idx, char2idx, label2idx, config)\n", |
| 211 | + "eval_x, eval_y = get_inputs('eval', token2idx, char2idx, label2idx, config)\n", |
| 212 | + "test_x, test_y = get_inputs('test', token2idx, char2idx, label2idx, config)\n", |
| 213 | + "\n", |
| 214 | + "# initial the same NER model \n", |
| 215 | + "ner_model = Model(config)\n", |
| 216 | + "ner_model.build_graph()\n", |
| 217 | + "ner_model.initialize_session()" |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "code", |
| 222 | + "execution_count": 13, |
| 223 | + "metadata": {}, |
| 224 | + "outputs": [], |
| 225 | + "source": [ |
| 226 | + "# training and test\n", |
| 227 | + "ner_model.train(train_x,train_y,eval_x,eval_y)\n", |
| 228 | + "ner_model.test(eval_x,eval_y, 'eval')\n", |
| 229 | + "ner_model.test(test_x,test_y, 'test')\n", |
| 230 | + "ner_model.close()\n", |
| 231 | + "tf.reset_default_graph()" |
| 232 | + ] |
| 233 | + }, |
| 234 | + { |
| 235 | + "cell_type": "code", |
| 236 | + "execution_count": null, |
| 237 | + "metadata": {}, |
| 238 | + "outputs": [], |
| 239 | + "source": [] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "markdown", |
| 243 | + "metadata": {}, |
| 244 | + "source": [ |
| 245 | + "# Contextual Embedding" |
| 246 | + ] |
| 247 | + }, |
| 248 | + { |
| 249 | + "cell_type": "markdown", |
| 250 | + "metadata": {}, |
| 251 | + "source": [ |
| 252 | + "## flair + glove" |
| 253 | + ] |
| 254 | + }, |
| 255 | + { |
| 256 | + "cell_type": "code", |
| 257 | + "execution_count": 16, |
| 258 | + "metadata": {}, |
| 259 | + "outputs": [], |
| 260 | + "source": [ |
| 261 | + "# from config import Config\n", |
| 262 | + "from flair.embeddings import TokenEmbeddings, WordEmbeddings, StackedEmbeddings, CharLMEmbeddings, FlairEmbeddings\n", |
| 263 | + "from config_examples.config_contextual import Config\n", |
| 264 | + "from utils import load_cropus, get_cropus_len, get_inputs_contextual\n", |
| 265 | + "config = Config('flair_glove')\n", |
| 266 | + "\n", |
| 267 | + "# create a StackedEmbedding object that combines the embedding you want\n", |
| 268 | + "stacked_embeddings = StackedEmbeddings([\n", |
| 269 | + " WordEmbeddings('glove'), \n", |
| 270 | + " FlairEmbeddings('news-forward-fast'), \n", |
| 271 | + " FlairEmbeddings('news-backward-fast'),\n", |
| 272 | + " ])\n", |
| 273 | + "\n", |
| 274 | + "# load the corpus into flair libs\n", |
| 275 | + "token2idx1, char2idx, label2idx = get_idx(config)\n", |
| 276 | + "train, dev, test = load_cropus(config)\n", |
| 277 | + "\n", |
| 278 | + "\n", |
| 279 | + "\n", |
| 280 | + "\n", |
| 281 | + "# setting the [the number of token in corpus, the dimension of the stacked embedding]\n", |
| 282 | + "# this two number should be computed by your own cropus and the embedding combination your choose\n", |
| 283 | + "# for CONLL dataset, the cropus_len = 301418, flair-news-forward-fast + glove.100d = 2148\n", |
| 284 | + "datasets = [config.path_train, config.path_eval, config.path_test]\n", |
| 285 | + "cropus_len = get_cropus_len(datasets)\n", |
| 286 | + "lookup_table = np.zeros([cropus_len, 1124])\n", |
| 287 | + "token2idx = []\n", |
| 288 | + "\n", |
| 289 | + "\n", |
| 290 | + "train_x, train_y, offset = get_inputs_contextual(train,stacked_embeddings, 0, \n", |
| 291 | + " lookup_table,token2idx, char2idx, label2idx,)\n", |
| 292 | + "eval_x, eval_y, offset1 = get_inputs_contextual(dev,stacked_embeddings, offset, \n", |
| 293 | + " lookup_table,token2idx, char2idx, label2idx,)\n", |
| 294 | + "test_x, test_y, offset2 = get_inputs_contextual(test,stacked_embeddings, offset1, \n", |
| 295 | + " lookup_table,token2idx, char2idx, label2idx,)\n", |
| 296 | + "\n", |
| 297 | + "# update the lookup_table and token2idx according to the dataset since they will be contextual dependent\n", |
| 298 | + "config.init_contextual(lookup_table, token2idx)" |
| 299 | + ] |
| 300 | + }, |
| 301 | + { |
| 302 | + "cell_type": "code", |
| 303 | + "execution_count": 17, |
| 304 | + "metadata": { |
| 305 | + "scrolled": false |
| 306 | + }, |
| 307 | + "outputs": [], |
| 308 | + "source": [ |
| 309 | + "# initial the same NER model \n", |
| 310 | + "ner_model = Model(config)\n", |
| 311 | + "ner_model.build_graph()\n", |
| 312 | + "ner_model.initialize_session()\n", |
| 313 | + "\n", |
| 314 | + "# training and test\n", |
| 315 | + "ner_model.train(train_x,train_y,eval_x,eval_y)\n", |
| 316 | + "ner_model.test(eval_x,eval_y,'eval')\n", |
| 317 | + "ner_model.test(test_x,test_y, 'test')\n", |
| 318 | + "ner_model.close()" |
| 319 | + ] |
| 320 | + }, |
| 321 | + { |
| 322 | + "cell_type": "markdown", |
| 323 | + "metadata": {}, |
| 324 | + "source": [ |
| 325 | + "## elmo + w2v" |
| 326 | + ] |
| 327 | + }, |
| 328 | + { |
| 329 | + "cell_type": "code", |
| 330 | + "execution_count": null, |
| 331 | + "metadata": {}, |
| 332 | + "outputs": [], |
| 333 | + "source": [ |
| 334 | + "# from config import Config\n", |
| 335 | + "from config_examples.config_contextual import Config\n", |
| 336 | + "from utils import load_cropus, get_cropus_len, get_inputs_contextual\n", |
| 337 | + "from flair.embeddings import ELMoEmbeddings,StackedEmbeddings,WordEmbeddings\n", |
| 338 | + "elmo_embedding = ELMoEmbeddings()\n", |
| 339 | + "w2v_embedding = WordEmbeddings('/home/semantic/Liang_NER/data/word_embedding/word2vec/w2v.gensim')\n", |
| 340 | + "config = Config('elmo_w2v')\n", |
| 341 | + "\n", |
| 342 | + "# load the corpus into flair libs\n", |
| 343 | + "token2idx1, char2idx, label2idx = get_idx(config)\n", |
| 344 | + "train, dev, test = load_cropus(config)\n", |
| 345 | + "\n", |
| 346 | + "# create a StackedEmbedding object that combines the embedding you want\n", |
| 347 | + "stacked_embeddings = StackedEmbeddings(embeddings=[w2v_embedding,elmo_embedding])\n", |
| 348 | + "datasets = [config.path_train, config.path_eval, config.path_test]\n", |
| 349 | + "cropus_len = get_cropus_len(datasets)\n", |
| 350 | + "lookup_table = np.zeros([cropus_len, 1124])\n", |
| 351 | + "token2idx = []\n", |
| 352 | + "\n", |
| 353 | + "\n", |
| 354 | + "train_x, train_y, offset = get_inputs_contextual(train,stacked_embeddings, 0, \n", |
| 355 | + " lookup_table,token2idx, char2idx, label2idx,)\n", |
| 356 | + "eval_x, eval_y, offset1 = get_inputs_contextual(dev,stacked_embeddings, offset, \n", |
| 357 | + " lookup_table,token2idx, char2idx, label2idx,)\n", |
| 358 | + "test_x, test_y, offset2 = get_inputs_contextual(test,stacked_embeddings, offset1, \n", |
| 359 | + " lookup_table,token2idx, char2idx, label2idx,)\n", |
| 360 | + "\n", |
| 361 | + "# update the lookup_table and token2idx according to the dataset since they will be contextual dependent\n", |
| 362 | + "config.init_contextual(lookup_table, token2idx)" |
| 363 | + ] |
| 364 | + } |
| 365 | + ], |
| 366 | + "metadata": { |
| 367 | + "kernelspec": { |
| 368 | + "display_name": "Python 3", |
| 369 | + "language": "python", |
| 370 | + "name": "python3" |
| 371 | + }, |
| 372 | + "language_info": { |
| 373 | + "codemirror_mode": { |
| 374 | + "name": "ipython", |
| 375 | + "version": 3 |
| 376 | + }, |
| 377 | + "file_extension": ".py", |
| 378 | + "mimetype": "text/x-python", |
| 379 | + "name": "python", |
| 380 | + "nbconvert_exporter": "python", |
| 381 | + "pygments_lexer": "ipython3", |
| 382 | + "version": "3.6.6" |
| 383 | + } |
| 384 | + }, |
| 385 | + "nbformat": 4, |
| 386 | + "nbformat_minor": 2 |
| 387 | +} |
0 commit comments