forked from PaddlePaddle/Research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer.py
148 lines (124 loc) · 4.91 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Infer for PWCNet."""
import sys
import pickle
import time
import cv2
import numpy as np
from math import ceil
from scipy.ndimage import imread
from scipy.misc import imsave
import paddle.fluid as fluid
from models.model import PWCDCNet
from src import flow_vis
def writeFlowFile(filename, uv):
"""
According to the matlab code of Deqing Sun and c++ source code of Daniel Scharstein
Contact: [email protected]
Contact: [email protected]
"""
TAG_STRING = np.array(202021.25, dtype=np.float32)
if uv.shape[2] != 2:
sys.exit("writeFlowFile: flow must have two bands!");
H = np.array(uv.shape[0], dtype=np.int32)
W = np.array(uv.shape[1], dtype=np.int32)
with open(filename, 'wb') as f:
f.write(TAG_STRING.tobytes())
f.write(W.tobytes())
f.write(H.tobytes())
f.write(uv.tobytes())
def load_dict(filename_):
with open(filename_, 'rb') as f:
ret_di = pickle.load(f)
return ret_di
def pad_input(x0):
intWidth = x0.shape[2]
intHeight = x0.shape[3]
if intWidth != ((intWidth >> 6) << 6):
intWidth_pad = (((intWidth >> 6) + 1) << 6) # more than necessary
intPaddingLeft = int((intWidth_pad - intWidth) / 2)
intPaddingRight = intWidth_pad - intWidth - intPaddingLeft
else:
intWidth_pad = intWidth
intPaddingLeft = 0
intPaddingRight = 0
if intHeight != ((intHeight >> 6) << 6):
intHeight_pad = (((intHeight >> 6) + 1) << 6) # more than necessary
intPaddingTop = int((intHeight_pad - intHeight) / 2)
intPaddingBottom = intHeight_pad - intHeight - intPaddingTop
else:
intHeight_pad = intHeight
intPaddingTop = 0
intPaddingBottom = 0
out = fluid.layers.pad2d(input=x0,
paddings=[intPaddingLeft, intPaddingRight, intPaddingTop, intPaddingBottom],
mode='edge')
return out, [intPaddingLeft, intPaddingRight, intPaddingTop, intPaddingBottom, intWidth, intHeight]
def main():
im1_fn = 'data/frame_0010.png'
im2_fn = 'data/frame_0011.png'
flow_fn = './tmp/frame_0010_pd.flo'
if len(sys.argv) > 1:
im1_fn = sys.argv[1]
if len(sys.argv) > 2:
im2_fn = sys.argv[2]
if len(sys.argv) > 3:
flow_fn = sys.argv[3]
im_all = [imread(img) for img in [im1_fn, im2_fn]]
im_all = [im[:, :, :3] for im in im_all]
# rescale the image size to be multiples of 64
divisor = 64.
H = im_all[0].shape[0]
W = im_all[0].shape[1]
print('origin shape : ', H, W)
H_ = int(ceil(H / divisor) * divisor)
W_ = int(ceil(W / divisor) * divisor)
print('resize shape: ', H_, W_)
for i in range(len(im_all)):
im_all[i] = cv2.resize(im_all[i], (W_, H_))
for _i, _inputs in enumerate(im_all):
im_all[_i] = im_all[_i][:, :, ::-1]
im_all[_i] = 1.0 * im_all[_i] / 255.0
im_all[_i] = np.transpose(im_all[_i], (2, 0, 1))
im_all = np.concatenate((im_all[0], im_all[1]), axis=0).astype(np.float32)
im_all = im_all[np.newaxis, :, :, :]
with fluid.dygraph.guard(place=fluid.CUDAPlace(0)):
im_all = fluid.dygraph.to_variable(im_all)
im_all, [intPaddingLeft, intPaddingRight, intPaddingTop, intPaddingBottom, intWidth, intHeight] = pad_input(
im_all)
model = PWCDCNet("pwcnet")
model.eval()
pd_pretrain, _ = fluid.dygraph.load_dygraph("paddle_model/pwc_net_paddle")
model.set_dict(pd_pretrain)
start = time.time()
flo = model(im_all)
end = time.time()
print('Time of PWCNet model for one infer step: ', end - start)
flo = flo[0].numpy() * 20.0
# scale the flow back to the input size
flo = np.swapaxes(np.swapaxes(flo, 0, 1), 1, 2)
flo = flo[intPaddingTop * 2:intPaddingTop * 2 + intHeight * 2,
intPaddingLeft * 2: intPaddingLeft * 2 + intWidth * 2, :]
u_ = cv2.resize(flo[:, :, 0], (W, H))
v_ = cv2.resize(flo[:, :, 1], (W, H))
u_ *= W / float(W_)
v_ *= H / float(H_)
flo = np.dstack((u_, v_))
# # Apply the coloring (for OpenCV, set convert_to_bgr=True)
flow_color = flow_vis.flow_to_color(flo, convert_to_bgr=False)
imsave('./tmp/hsv_pd.png', flow_color)
writeFlowFile(flow_fn, flo)
if __name__ == '__main__':
main()