-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar_train.py
executable file
·239 lines (197 loc) · 8.35 KB
/
cifar_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import torch
import argparse
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data.distributed
from torchvision import datasets, transforms, models
import os
from tqdm import tqdm
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
CIFAR100_TRAIN_MEAN = (0.5070751592371323, 0.48654887331495095, 0.4409178433670343)
CIFAR100_TRAIN_STD = (0.2673342858792401, 0.2564384629170883, 0.27615047132568404)
CIFAR10_TRAIN_MEAN = (0.4914, 0.4822, 0.4465)
CIFAR10_TRAIN_STD = (0.2023, 0.1994, 0.2010)
NCOLS_SCREEN = 85
# Training settings
parser = argparse.ArgumentParser(description='PyTorch CIFAR Example',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset-dir', default=os.path.expanduser('./cifar10'),
help='path to training data')
parser.add_argument('--log-dir', default='./logs',
help='tensorboard log directory')
parser.add_argument('--batch-size', type=int, default=256,
help='input batch size for training')
parser.add_argument('--val-batch-size', type=int, default=256,
help='input batch size for validation')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train')
parser.add_argument('--base-lr', type=float, default=0.1,
help='learning rate for a single GPU')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum')
parser.add_argument('--wd', type=float, default=1e-4,
help='weight decay')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=42,
help='random seed')
parser.add_argument('--dist-backend', choices=['cgx', 'nccl', 'gloo'], default='nccl',
help='Backend for torch distributed')
parser.add_argument('--quantization-bits', type=int, default=32,
help='Quantization bits for maxmin quantization')
parser.add_argument('--quantization-bucket-size', type=int, default=1024,
help='Bucket size for quantization in maxmin quantization')
parser.add_argument('--local_rank', type=int, default=-1,
help='Local rank in distributed launch')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if "OMPI_COMM_WORLD_SIZE" in os.environ:
args.local_rank = int(os.environ["OMPI_COMM_WORLD_RANK"])
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '4040'
os.environ["WORLD_SIZE"] = os.environ["OMPI_COMM_WORLD_SIZE"]
os.environ["RANK"] = os.environ["OMPI_COMM_WORLD_RANK"]
if "WORLD_SIZE" in os.environ:
import torch_cgx
args.distributed = int(os.environ["WORLD_SIZE"]) > 1
local_rank = args.local_rank % torch.cuda.device_count()
dist.init_process_group(backend=args.dist_backend, init_method="env://")
args.world_size = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
else:
args.distributed = False
local_rank = 0
args.world_size = 1
rank = 0
print(args)
if args.cuda:
torch.cuda.set_device(local_rank)
torch.cuda.manual_seed(args.seed)
cudnn.benchmark = True
verbose = 1 if rank == 0 else 0
torch.set_num_threads(4)
is_cifar100 = "cifar100" in args.dataset_dir
if is_cifar100:
transform_mean, transform_std = CIFAR100_TRAIN_MEAN, CIFAR100_TRAIN_STD
else:
transform_mean, transform_std = CIFAR10_TRAIN_MEAN, CIFAR10_TRAIN_STD
kwargs = {'num_workers': 0, 'pin_memory': True} if args.cuda else {}
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(transform_mean, transform_std),
])
if is_cifar100:
train_dataset = datasets.CIFAR100(root=args.dataset_dir, train=True, download=True, transform=transform_train)
else:
train_dataset = datasets.CIFAR10(root=args.dataset_dir, train=True, download=True, transform=transform_train)
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=args.world_size, rank=rank)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size,
sampler=train_sampler, **kwargs)
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(transform_mean, transform_std),
])
if is_cifar100:
val_dataset = datasets.CIFAR100(root=args.dataset_dir, train=False, download=True, transform=transform_test)
else:
val_dataset = datasets.CIFAR10(root=args.dataset_dir, train=False, download=True, transform=transform_test)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.val_batch_size,
**kwargs)
if is_cifar100:
num_classes = 100
else:
num_classes = 10
model = models.resnet18(num_classes=num_classes)
if args.cuda:
# Move model to GPU.
model.cuda()
optimizer = optim.SGD(model.parameters(),
lr=args.base_lr,
momentum=args.momentum, weight_decay=args.wd)
if args.distributed:
model = DDP(model, device_ids=[local_rank])
if args.dist_backend == 'cgx':
assert "OMPI_COMM_WORLD_SIZE" in os.environ, "CGX only works with with mpirun launch"
from cgx_utils import cgx_hook, CGXState
state = CGXState(torch.distributed.group.WORLD,
compression_params={"bits": args.quantization_bits,
"bucket_size": args.quantization_bucket_size})
model.register_comm_hook(state, cgx_hook)
def adjust_learning_rate(epoch, batch_idx):
if epoch < 60:
lr_adj = 1.
elif epoch < 120:
lr_adj = 2e-1
elif epoch < 160:
lr_adj = 4e-2
else:
lr_adj = 8e-3
for param_group in optimizer.param_groups:
param_group['lr'] = args.base_lr * lr_adj
def train(epoch):
model.train()
criterion = torch.nn.CrossEntropyLoss()
train_loss = Metric('train_loss')
train_accuracy = Metric('train_accuracy')
with tqdm(total=len(train_loader),
desc='TEpoch #{}'.format(epoch + 1), disable=not verbose, ncols=NCOLS_SCREEN) as t:
for batch_idx, (data, target) in enumerate(train_loader):
adjust_learning_rate(epoch, batch_idx)
if args.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
train_accuracy.update(accuracy(output, target))
loss = criterion(output, target)
train_loss.update(loss)
t.set_postfix({'loss': train_loss.avg.item(),
'accuracy': 100. * train_accuracy.avg.item()})
loss.backward()
optimizer.step()
t.update(1)
def validate(epoch):
model.eval()
criterion = torch.nn.CrossEntropyLoss()
val_loss = Metric('val_loss')
val_accuracy = Metric('val_accuracy')
with tqdm(total=len(val_loader),
desc='Validate Epoch #{}'.format(epoch + 1),
disable=not verbose, ncols=NCOLS_SCREEN) as t:
with torch.no_grad():
for data, target in val_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
val_loss.update(criterion(output, target))
val_accuracy.update(accuracy(output, target))
t.set_postfix({'loss': val_loss.avg.item(),
'accuracy': 100. * val_accuracy.avg.item()})
t.update(1)
def accuracy(output, target):
# get the index of the max log-probability
pred = output.max(1, keepdim=True)[1]
return pred.eq(target.view_as(pred)).cpu().float().mean()
class Metric(object):
def __init__(self, name):
self.name = name
self.sum = torch.tensor(0.)
self.n = torch.tensor(0.)
def update(self, val):
self.sum += val.detach().cpu()
self.n += 1
@property
def avg(self):
return self.sum / self.n
num_images = len(train_loader)
for epoch in range(0, args.epochs):
if args.world_size > 0:
train_sampler.set_epoch(epoch)
train(epoch)
validate(epoch)
if args.distributed:
dist.barrier()