-
Notifications
You must be signed in to change notification settings - Fork 1
/
quant.py
214 lines (204 loc) · 7.51 KB
/
quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import argparse
import time
import torch
import torch.distributed as dist
from transformers import AutoModelForCausalLM, AutoTokenizer
import wandb
from src import dist_utils
from src.data_utils import get_data
from src.quantizer import Quantizer
def parse_args():
parser = argparse.ArgumentParser(description="One-shot quantization with parallel GPTQ.")
# Model params
parser.add_argument(
"--model_name_or_path",
type=str,
required=True,
help="The name or path to the model being quantized",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="The name or path to the tokenizer. By default use model tokenizer.",
)
parser.add_argument(
"--quantizable_modules",
type=str,
required=True,
help="Regex for modules to quantize",
)
parser.add_argument(
"--pre_block_modules",
nargs="+",
type=str,
required=True,
help="Names of modules before transformer blocks",
)
parser.add_argument(
"--block_modules",
type=str,
required=True,
help="Name of transformer modules",
)
parser.add_argument(
"--post_block_modules",
nargs="+",
type=str,
required=True,
help="Names of modules after transformer blocks",
)
## Data params
parser.add_argument(
"--calibration_data",
type=str,
required=True,
help="The name or dataset or path used for calibration.",
)
parser.add_argument("--calibration_tokens", default=int(2**23), type=int, help="Number of tokens for calibration.")
parser.add_argument(
"--calibration_sequence_length", default=None, type=int, help="Length of calibration sequences."
)
# Quantization params
parser.add_argument(
"--bitwidth_options",
nargs="+",
type=int,
required=True,
help="List of bitwidths to quantize the model.",
)
parser.add_argument(
"--calibration_bitwidth",
type=int,
required=True,
help="Quantization bitwidth loaded to produce hessian. Must be in bitwidth_options.",
)
parser.add_argument(
"--group_size",
type=int,
default=None,
help="How many weight columns (input features) are quantized with the same statistics, default = all of them",
)
parser.add_argument(
"--act_order",
action="store_true",
help="Whether to permute in activation order.",
)
parser.add_argument("--sym", action="store_true", help="Whether to use symmetric quantization")
parser.add_argument(
"--perchannel",
action="store_true",
help="fit a unique quantizer to each output dim",
)
parser.add_argument("--rel_damp", type=float, default=1e-2)
parser.add_argument("--block_size", type=int, default=128)
# Logging params
parser.add_argument("--log_wandb", default=False, action="store_true", help="Log to W&B")
# Misc params
parser.add_argument(
"--dtype",
type=str,
default="auto",
choices=["auto", "float16", "float32", "bfloat16"],
help="dtype to load the model.",
)
parser.add_argument("--seed", default=0, type=int, help="random seed.")
parser.add_argument(
"--low_cpu_mem_usage", action="store_true", help="whether to load model with the use of `low_cpu_mem_usage`"
)
parser.add_argument(
"--attn_implementation",
type=str,
default=None,
choices=["eager", "sdpa", "flash_attention_2"],
help="Attention implementation for both teacher and student models: eager, sdpa, or flash_attention_2",
)
parser.add_argument("--cpu_offload_modules", action="store_true", help="whether to offload modules to CPU.")
parser.add_argument("--cpu_offload_activations", action="store_true", help="whether to offload activations to CPU.")
parser.add_argument("--new_eval", action="store_true", help="whether to use new evaluation setup.")
parser.add_argument("--verbose", action="store_true", help="whether to log progress.")
# Save params
parser.add_argument("--save_dir", type=str, required=True, help="where to save sparse model.")
args = parser.parse_args()
return args
def main():
args = parse_args()
# Distributed init
if dist.is_available():
dist.init_process_group(backend="nccl", init_method="env://")
world_size = dist_utils.get_world_size()
rank = dist_utils.get_rank()
# init device
device = f"cuda:{rank}"
if args.dtype != "auto":
args.dtype = getattr(torch, args.dtype)
# init W&B logger
if args.log_wandb and dist_utils.is_main():
wandb.init(config=args)
# Model
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
torch_dtype=args.dtype,
low_cpu_mem_usage=args.low_cpu_mem_usage,
attn_implementation=args.attn_implementation,
)
print(model)
if not args.cpu_offload_modules:
model = model.to(device)
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name or args.model_name_or_path, use_fast=False)
# Load calibration data
args.calibration_sequence_length = args.calibration_sequence_length or model.config.max_position_embeddings
calibration_data = get_data(
args.calibration_data, args.calibration_tokens, args.calibration_sequence_length, tokenizer, train=True
)
# Take slice (if running on multiple workers)
if dist_utils.is_dist_available_and_initialized():
num_seq_per_rank = len(calibration_data) // world_size
calibration_data = calibration_data[rank * num_seq_per_rank : (rank + 1) * num_seq_per_rank]
calibration_data = [([], {"input_ids": input_ids}) for input_ids in calibration_data]
dist.barrier()
# Quantizer
if args.calibration_bitwidth not in args.bitwidth_options:
raise ValueError(f"Calibration bitwidth {args.calibration_bitwidth} is not in bitwidth_options.")
# Move calibration_bitwidth to last position (last bitwidth is used for hessian)
args.bitwidth_options = [bits for bits in args.bitwidth_options if bits != args.calibration_bitwidth] + [
args.calibration_bitwidth
]
dist_utils.print_on_main(f"Bitwidth options: {args.bitwidth_options}")
# Override save dir name
args.save_dir = os.path.join(
args.save_dir, args.model_name_or_path.split("/")[-1], f"{args.calibration_bitwidth}bit"
)
quantizer = Quantizer(
model,
calibration_data,
quantizable_modules=args.quantizable_modules,
pre_block_modules=args.pre_block_modules,
block_modules=args.block_modules,
obq_kwargs=dict(
rel_damp=args.rel_damp,
block_size=args.block_size,
perchannel=args.perchannel,
group_size=args.group_size,
sym=args.sym,
act_order=args.act_order,
),
save_dir=args.save_dir,
device=device,
cpu_offload_modules=args.cpu_offload_modules,
cpu_offload_activations=args.cpu_offload_activations,
verbose=args.verbose,
)
# Prepare save dir
if dist_utils.is_main():
os.makedirs(args.save_dir, exist_ok=True)
dist.barrier()
t1 = time.perf_counter()
quantizer.quantize(args.bitwidth_options, args.calibration_bitwidth)
t2 = time.perf_counter()
dist_utils.print_on_main(f"Quantization took {(t2 - t1)} s.")
if __name__ == "__main__":
main()