-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
243 lines (187 loc) · 9.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
import pandas as pd
import numpy as np
import time
import os
import sys
from torch import optim
from torch.optim.lr_scheduler import StepLR
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torchvision.utils import save_image
import torch.nn.functional as F
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from tensorboardX import SummaryWriter
from torchvision.models.resnet import resnet18
from optparse import OptionParser
from utils.load_dataset import *
from utils.logging_tensorboard import *
import yaml
def train_net(net, merged_data, args, **kwargs):
"""
TODO 2019-08-28
트레이닝 데이터 개수 : 약 80,000 개 (512 x 512 x 6 기준)
학습 0.8을 사용하면 약 62,000 개
batch_size 10 정도로 하면 6,200 번의 iterations
대략 100 iter 마다 progress 프린트되도록
"""
##################### set parameters #######################
step_size= 10 #learning rate decay step size
reducelr_patience = 6
lr_decay = 0.3
data_path = kwargs.get('data_path', None)
model_path = kwargs.get('model_path', None)
#################################################################
###optimizer###
if args.opt == "sgd":
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=0.0005)
elif args.opt == "adam":
# optimizer = optim.Adam(net.parameters(), lr=args.lr, weight_decay=0.0005)
optimizer = optim.Adam(net.parameters(), lr=args.lr)
else:
raise ValueError("you gave wrong a parameter for --optim : {}".format(args.opt))
###loss function###
if args.loss == 'bce':
print("loss : bce")
criterion = nn.BCEWithLogitsLoss()
elif args.loss == 'nll':
print("loss : nll")
criterion = nn.NLLLoss()
elif args.loss == 'ce':
print('loss : ce(Cross Entropy)')
criterion = nn.CrossEntropyLoss()
else:
raise ValueError("you gave a wrong parameter for --loss : {}".format(args.loss))
###scheduler###
if args.scheduler is not None:
if args.scheduler == "steplr":
scheduler = StepLR(optimizer=optimizer, step_size=step_size, gamma=lr_decay)
elif args.scheduler == "reducelr":
scheduler = ReduceLROnPlateau(optimizer=optimizer, patience=reducelr_patience, factor=lr_decay)
else:
raise ValueError("you gave wrong parameters for --scheduler : {}".format(args.scheduler))
val_benchmark = 10000000
train_dataset = TrainDatasetRecursion(merged_data=merged_data, batch_info=batch_info_dict,
args=args, isNormalize=args.normalize, isTrain=True, train_ratio=0.8, seed=10)
val_dataset = TrainDatasetRecursion(merged_data=merged_data, batch_info=batch_info_dict,
args=args, isNormalize=args.normalize, isTrain=False, train_ratio=0.8, seed=10)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)
val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)
####training & validation start#######
for epoch in range(args.epochs):
start_time = time.time()
writer.add_text('Text', 'text logged at epoch: ' + str(epoch), epoch) # temp for checking
print('\n\nStarting epoch {}/{}.'.format(epoch + 1, args.epochs))
writer_arguments(writer, args, epoch)
epoch_train_loss = 0
epoch_train_correct = 0
N_train = len(train_dataloader)
net.train()
print("training start :", time.ctime())
for i, (img, labels) in enumerate(train_dataloader):
if i % 100 == 0:
print("progress : {} / {}".format(i+1, N_train))
img = img.cuda()
labels = labels.cuda()
outputs = net(img)
_, predicted = torch.max(outputs.data, 1)
epoch_train_correct += (predicted == labels).sum().item()
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_train_loss = epoch_train_loss + loss.item()
writer_training(writer, epoch_train_loss / N_train, epoch)
print("accuracy : {}".format(epoch_train_correct / N_train))
print('Epoch finished! Train Loss: {}'.format(epoch_train_loss / N_train))
# VALIDATION
epoch_val_loss = eval_net(net, val_dataloader, criterion, args)
writer_validation(writer, epoch_val_loss / len(val_dataloader), epoch)
# If validation loss is lower than the previous model-checkpoint, a new model-checkpoint saved
if val_benchmark > epoch_val_loss:
val_benchmark = epoch_val_loss
checkpoint_path = os.path.join(model_path, args.model_index, 'CP{}.pth'.format(epoch + 1))
torch.save(net.state_dict(), checkpoint_path)
print('Checkpoint {} saved'.format(epoch + 1))
if args.scheduler == "steplr":
scheduler.step()
elif args.scheduler == "reducelr":
scheduler.step(epoch_val_loss)
taken_time = (time.time() - start_time)
print('---> One Epoch Done. (', taken_time, 'sec)')
def eval_net(net, val_dataloader, criterion, args):
epoch_val_loss = 0
epoch_val_correct = 0
N_val = len(val_dataloader)
net.eval()
print("validation start:", time.ctime())
for i, (img, labels) in enumerate(val_dataloader):
if i % 100 == 0:
print("progress : {} / {}".format(i+1, N_val))
img = img.cuda()
labels = labels.cuda()
outputs = net(img)
_, predicted = torch.max(outputs.data, 1)
epoch_val_correct += (predicted == labels).sum().item()
val_loss = criterion(outputs, labels)
epoch_val_loss = epoch_val_loss + val_loss.item()
print("accuracy : {}".format(epoch_val_correct / N_val))
print('Epoch finished! Val Loss: {}'.format(epoch_val_loss / N_val))
return epoch_val_loss
def get_args():
parser = OptionParser()
parser.add_option('-i', '--img-size', dest='img_size', default=512, type='int',
help='image size')
parser.add_option('-l', '--resize', dest='resize', default=256, type='int',
help='resize ')
parser.add_option('-e', '--epochs', dest='epochs', default=3, type='int',
help='number of epochs')
parser.add_option('-b', '--batch-size', dest='batch_size', default=8,
type='int', help='batch size')
parser.add_option('-r', '--learning-rate', dest='lr', default=0.01,
type='float', help='learning rate')
parser.add_option('-g', '--gpu', dest='gpu', default=0,
type='int', help='what index of gpu will be used for this code')
parser.add_option('-n', '--net', dest='net_name', type='str',
default="resnet18", help='network architecture')
parser.add_option('-y', '--model-index', dest='model_index', type='str',
default="model_default", help='model_name (used to separate individual codes execution)')
parser.add_option('-s', '--scheduler', dest='scheduler',
default=None, help="which scheduler(weight decay) is used")
parser.add_option('--optim', dest='opt',
default='sgd', help="optimizer (currently available : sgd, adam)")
parser.add_option('--loss', dest='loss',
default='ce',
help="loss function (currently available : ce)")
parser.add_option('--normalize', dest='normalize', help="normalization")
####cell recursion-specific arguments
parser.add_option('--cell', dest='cell',
default='all',
help='cell name to be used (if "all", all cells will be in dataset)')
#parser.add_option('')
(args, _) = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
data_path = "/hdd/LINUX/cell_perturbation/"
model_path = "/hdd/LINUX/cell_perturbation/hyunbin/model/"
batch_info_path = "/hdd/LINUX/codes/cell_perturbation/batch_info.yaml"
metadata_path = "/hdd/LINUX/codes/cell_perturbation/metadata.pickle"
#### create dataset ####
traindata = load_data_cell_perturbation(base_path=os.path.join(data_path, "train"))
testdata = load_data_cell_perturbation(base_path=os.path.join(data_path, "test"))
metadata = load_metadata(from_server=False, path=metadata_path)
merged_data = merge_all_data_to_metadata([traindata, testdata], metadata)
with open(batch_info_path, 'r', encoding="utf-8") as yaml_file:
batch_info_dict = yaml.load(yaml_file)
#############load parameters#######################
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
#create writer with tensorboardX
if not os.path.exists('runs'):
os.mkdir('runs')
writer = SummaryWriter('runs/{}'.format(args.model_index))
#### load network #####
net = load_net(args.net_name)
torch.backends.cudnn.benchmark = True
net = net.cuda()
train_net(net=net, merged_data=merged_data, args=args, model_path=model_path)