-
Notifications
You must be signed in to change notification settings - Fork 15
/
poseidon2_rust_params.sage
713 lines (611 loc) · 26 KB
/
poseidon2_rust_params.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
# Remark: This script contains functionality for GF(2^n), but currently works only over GF(p)! A few small adaptations are needed for GF(2^n).
from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list
from math import *
import itertools
###########################################################################
# p = 18446744069414584321 # GoldiLocks
# p = 2013265921 # BabyBear
p = 52435875175126190479447740508185965837690552500527637822603658699938581184513 # BLS12-381
# p = 21888242871839275222246405745257275088548364400416034343698204186575808495617 # BN254/BN256
# p = 28948022309329048855892746252171976963363056481941560715954676764349967630337 # Pasta (Pallas)
# p = 28948022309329048855892746252171976963363056481941647379679742748393362948097 # Pasta (Vesta)
n = len(p.bits()) # bit
# t = 12 # GoldiLocks (t = 12 for sponge, t = 8 for compression)
# t = 16 # BabyBear (t = 24 for sponge, t = 16 for compression)
t = 3 # BN254/BN256, BLS12-381, Pallas, Vesta (t = 3 for sponge, t = 2 for compression)
FIELD = 1
SBOX = 0
FIELD_SIZE = n
NUM_CELLS = t
def get_alpha(p):
for alpha in range(3, p):
if gcd(alpha, p-1) == 1:
break
return alpha
alpha = get_alpha(p)
def get_sbox_cost(R_F, R_P, N, t):
return int(t * R_F + R_P)
def get_size_cost(R_F, R_P, N, t):
n = ceil(float(N) / t)
return int((N * R_F) + (n * R_P))
def poseidon_calc_final_numbers_fixed(p, t, alpha, M, security_margin):
# [Min. S-boxes] Find best possible for t and N
n = ceil(log(p, 2))
N = int(n * t)
cost_function = get_sbox_cost
ret_list = []
(R_F, R_P) = find_FD_round_numbers(p, t, alpha, M, cost_function, security_margin)
min_sbox_cost = cost_function(R_F, R_P, N, t)
ret_list.append(R_F)
ret_list.append(R_P)
ret_list.append(min_sbox_cost)
# [Min. Size] Find best possible for t and N
# Minimum number of S-boxes for fixed n results in minimum size also (round numbers are the same)!
min_size_cost = get_size_cost(R_F, R_P, N, t)
ret_list.append(min_size_cost)
return ret_list # [R_F, R_P, min_sbox_cost, min_size_cost]
def find_FD_round_numbers(p, t, alpha, M, cost_function, security_margin):
n = ceil(log(p, 2))
N = int(n * t)
sat_inequiv = sat_inequiv_alpha
R_P = 0
R_F = 0
min_cost = float("inf")
max_cost_rf = 0
# Brute-force approach
for R_P_t in range(1, 500):
for R_F_t in range(4, 100):
if R_F_t % 2 == 0:
if (sat_inequiv(p, t, R_F_t, R_P_t, alpha, M) == True):
if security_margin == True:
R_F_t += 2
R_P_t = int(ceil(float(R_P_t) * 1.075))
cost = cost_function(R_F_t, R_P_t, N, t)
if (cost < min_cost) or ((cost == min_cost) and (R_F_t < max_cost_rf)):
R_P = ceil(R_P_t)
R_F = ceil(R_F_t)
min_cost = cost
max_cost_rf = R_F
return (int(R_F), int(R_P))
def sat_inequiv_alpha(p, t, R_F, R_P, alpha, M):
N = int(FIELD_SIZE * NUM_CELLS)
if alpha > 0:
R_F_1 = 6 if M <= ((floor(log(p, 2) - ((alpha-1)/2.0))) * (t + 1)) else 10 # Statistical
R_F_2 = 1 + ceil(log(2, alpha) * min(M, FIELD_SIZE)) + ceil(log(t, alpha)) - R_P # Interpolation
R_F_3 = (log(2, alpha) * min(M, log(p, 2))) - R_P # Groebner 1
R_F_4 = t - 1 + log(2, alpha) * min(M / float(t + 1), log(p, 2) / float(2)) - R_P # Groebner 2
R_F_5 = (t - 2 + (M / float(2 * log(alpha, 2))) - R_P) / float(t - 1) # Groebner 3
R_F_max = max(ceil(R_F_1), ceil(R_F_2), ceil(R_F_3), ceil(R_F_4), ceil(R_F_5))
# Addition due to https://eprint.iacr.org/2023/537.pdf
r_temp = floor(t / 3.0)
over = (R_F - 1) * t + R_P + r_temp + r_temp * (R_F / 2.0) + R_P + alpha
under = r_temp * (R_F / 2.0) + R_P + alpha
binom_log = log(binomial(over, under), 2)
if binom_log == inf:
binom_log = M + 1
cost_gb4 = ceil(2 * binom_log) # Paper uses 2.3727, we are more conservative here
return ((R_F >= R_F_max) and (cost_gb4 >= M))
else:
print("Invalid value for alpha!")
exit(1)
R_F_FIXED, R_P_FIXED, _, _ = poseidon_calc_final_numbers_fixed(p, t, alpha, 128, True)
print("+++ R_F = {0}, R_P = {1} +++".format(R_F_FIXED, R_P_FIXED))
# For STARK TODO
# r_p_mod = R_P_FIXED % NUM_CELLS
# if r_p_mod != 0:
# R_P_FIXED = R_P_FIXED + NUM_CELLS - r_p_mod
###########################################################################
INIT_SEQUENCE = []
PRIME_NUMBER = p
# if FIELD == 1 and len(sys.argv) != 8:
# print("Please specify a prime number (in hex format)!")
# exit()
# elif FIELD == 1 and len(sys.argv) == 8:
# PRIME_NUMBER = int(sys.argv[7], 16) # e.g. 0xa7, 0xFFFFFFFFFFFFFEFF, 0xa1a42c3efd6dbfe08daa6041b36322ef
F = GF(PRIME_NUMBER)
def grain_sr_generator():
bit_sequence = INIT_SEQUENCE
for _ in range(0, 160):
new_bit = bit_sequence[62] ^^ bit_sequence[51] ^^ bit_sequence[38] ^^ bit_sequence[23] ^^ bit_sequence[13] ^^ bit_sequence[0]
bit_sequence.pop(0)
bit_sequence.append(new_bit)
while True:
new_bit = bit_sequence[62] ^^ bit_sequence[51] ^^ bit_sequence[38] ^^ bit_sequence[23] ^^ bit_sequence[13] ^^ bit_sequence[0]
bit_sequence.pop(0)
bit_sequence.append(new_bit)
while new_bit == 0:
new_bit = bit_sequence[62] ^^ bit_sequence[51] ^^ bit_sequence[38] ^^ bit_sequence[23] ^^ bit_sequence[13] ^^ bit_sequence[0]
bit_sequence.pop(0)
bit_sequence.append(new_bit)
new_bit = bit_sequence[62] ^^ bit_sequence[51] ^^ bit_sequence[38] ^^ bit_sequence[23] ^^ bit_sequence[13] ^^ bit_sequence[0]
bit_sequence.pop(0)
bit_sequence.append(new_bit)
new_bit = bit_sequence[62] ^^ bit_sequence[51] ^^ bit_sequence[38] ^^ bit_sequence[23] ^^ bit_sequence[13] ^^ bit_sequence[0]
bit_sequence.pop(0)
bit_sequence.append(new_bit)
yield new_bit
grain_gen = grain_sr_generator()
def grain_random_bits(num_bits):
random_bits = [next(grain_gen) for i in range(0, num_bits)]
# random_bits.reverse() ## Remove comment to start from least significant bit
random_int = int("".join(str(i) for i in random_bits), 2)
return random_int
def init_generator(field, sbox, n, t, R_F, R_P):
# Generate initial sequence based on parameters
bit_list_field = [_ for _ in (bin(FIELD)[2:].zfill(2))]
bit_list_sbox = [_ for _ in (bin(SBOX)[2:].zfill(4))]
bit_list_n = [_ for _ in (bin(FIELD_SIZE)[2:].zfill(12))]
bit_list_t = [_ for _ in (bin(NUM_CELLS)[2:].zfill(12))]
bit_list_R_F = [_ for _ in (bin(R_F)[2:].zfill(10))]
bit_list_R_P = [_ for _ in (bin(R_P)[2:].zfill(10))]
bit_list_1 = [1] * 30
global INIT_SEQUENCE
INIT_SEQUENCE = bit_list_field + bit_list_sbox + bit_list_n + bit_list_t + bit_list_R_F + bit_list_R_P + bit_list_1
INIT_SEQUENCE = [int(_) for _ in INIT_SEQUENCE]
def generate_constants(field, n, t, R_F, R_P, prime_number):
round_constants = []
# num_constants = (R_F + R_P) * t # Poseidon
num_constants = (R_F * t) + R_P # Poseidon2
if field == 0:
for i in range(0, num_constants):
random_int = grain_random_bits(n)
round_constants.append(random_int)
elif field == 1:
for i in range(0, num_constants):
random_int = grain_random_bits(n)
while random_int >= prime_number:
# print("[Info] Round constant is not in prime field! Taking next one.")
random_int = grain_random_bits(n)
round_constants.append(random_int)
# Add (t-1) zeroes for Poseidon2 if partial round
if i >= ((R_F/2) * t) and i < (((R_F/2) * t) + R_P):
round_constants.extend([0] * (t-1))
return round_constants
def print_round_constants(round_constants, n, field):
print("Number of round constants:", len(round_constants))
if field == 0:
print("Round constants for GF(2^n):")
elif field == 1:
print("Round constants for GF(p):")
hex_length = int(ceil(float(n) / 4)) + 2 # +2 for "0x"
print(["{0:#0{1}x}".format(entry, hex_length) for entry in round_constants])
def create_mds_p(n, t):
M = matrix(F, t, t)
# Sample random distinct indices and assign to xs and ys
while True:
flag = True
rand_list = [F(grain_random_bits(n)) for _ in range(0, 2*t)]
while len(rand_list) != len(set(rand_list)): # Check for duplicates
rand_list = [F(grain_random_bits(n)) for _ in range(0, 2*t)]
xs = rand_list[:t]
ys = rand_list[t:]
# xs = [F(ele) for ele in range(0, t)]
# ys = [F(ele) for ele in range(t, 2*t)]
for i in range(0, t):
for j in range(0, t):
if (flag == False) or ((xs[i] + ys[j]) == 0):
flag = False
else:
entry = (xs[i] + ys[j])^(-1)
M[i, j] = entry
if flag == False:
continue
return M
def generate_vectorspace(round_num, M, M_round, NUM_CELLS):
t = NUM_CELLS
s = 1
V = VectorSpace(F, t)
if round_num == 0:
return V
elif round_num == 1:
return V.subspace(V.basis()[s:])
else:
mat_temp = matrix(F)
for i in range(0, round_num-1):
add_rows = []
for j in range(0, s):
add_rows.append(M_round[i].rows()[j][s:])
mat_temp = matrix(mat_temp.rows() + add_rows)
r_k = mat_temp.right_kernel()
extended_basis_vectors = []
for vec in r_k.basis():
extended_basis_vectors.append(vector([0]*s + list(vec)))
S = V.subspace(extended_basis_vectors)
return S
def subspace_times_matrix(subspace, M, NUM_CELLS):
t = NUM_CELLS
V = VectorSpace(F, t)
subspace_basis = subspace.basis()
new_basis = []
for vec in subspace_basis:
new_basis.append(M * vec)
new_subspace = V.subspace(new_basis)
return new_subspace
# Returns True if the matrix is considered secure, False otherwise
def algorithm_1(M, NUM_CELLS):
t = NUM_CELLS
s = 1
r = floor((t - s) / float(s))
# Generate round matrices
M_round = []
for j in range(0, t+1):
M_round.append(M^(j+1))
for i in range(1, r+1):
mat_test = M^i
entry = mat_test[0, 0]
mat_target = matrix.circulant(vector([entry] + ([F(0)] * (t-1))))
if (mat_test - mat_target) == matrix.circulant(vector([F(0)] * (t))):
return [False, 1]
S = generate_vectorspace(i, M, M_round, t)
V = VectorSpace(F, t)
basis_vectors= []
for eigenspace in mat_test.eigenspaces_right(format='galois'):
if (eigenspace[0] not in F):
continue
vector_subspace = eigenspace[1]
intersection = S.intersection(vector_subspace)
basis_vectors += intersection.basis()
IS = V.subspace(basis_vectors)
if IS.dimension() >= 1 and IS != V:
return [False, 2]
for j in range(1, i+1):
S_mat_mul = subspace_times_matrix(S, M^j, t)
if S == S_mat_mul:
print("S.basis():\n", S.basis())
return [False, 3]
return [True, 0]
# Returns True if the matrix is considered secure, False otherwise
def algorithm_2(M, NUM_CELLS):
t = NUM_CELLS
s = 1
V = VectorSpace(F, t)
trail = [None, None]
test_next = False
I = range(0, s)
I_powerset = list(sage.misc.misc.powerset(I))[1:]
for I_s in I_powerset:
test_next = False
new_basis = []
for l in I_s:
new_basis.append(V.basis()[l])
IS = V.subspace(new_basis)
for i in range(s, t):
new_basis.append(V.basis()[i])
full_iota_space = V.subspace(new_basis)
for l in I_s:
v = V.basis()[l]
while True:
delta = IS.dimension()
v = M * v
IS = V.subspace(IS.basis() + [v])
if IS.dimension() == t or IS.intersection(full_iota_space) != IS:
test_next = True
break
if IS.dimension() <= delta:
break
if test_next == True:
break
if test_next == True:
continue
return [False, [IS, I_s]]
return [True, None]
# Returns True if the matrix is considered secure, False otherwise
def algorithm_3(M, NUM_CELLS):
t = NUM_CELLS
s = 1
V = VectorSpace(F, t)
l = 4*t
for r in range(2, l+1):
next_r = False
res_alg_2 = algorithm_2(M^r, t)
if res_alg_2[0] == False:
return [False, None]
# if res_alg_2[1] == None:
# continue
# IS = res_alg_2[1][0]
# I_s = res_alg_2[1][1]
# for j in range(1, r):
# IS = subspace_times_matrix(IS, M, t)
# I_j = []
# for i in range(0, s):
# new_basis = []
# for k in range(0, t):
# if k != i:
# new_basis.append(V.basis()[k])
# iota_space = V.subspace(new_basis)
# if IS.intersection(iota_space) != iota_space:
# single_iota_space = V.subspace([V.basis()[i]])
# if IS.intersection(single_iota_space) == single_iota_space:
# I_j.append(i)
# else:
# next_r = True
# break
# if next_r == True:
# break
# if next_r == True:
# continue
# return [False, [IS, I_j, r]]
return [True, None]
def check_minpoly_condition(M, NUM_CELLS):
max_period = 2*NUM_CELLS
all_fulfilled = True
M_temp = M
for i in range(1, max_period + 1):
if not ((M_temp.minimal_polynomial().degree() == NUM_CELLS) and (M_temp.minimal_polynomial().is_irreducible() == True)):
all_fulfilled = False
break
M_temp = M * M_temp
return all_fulfilled
def generate_matrix(FIELD, FIELD_SIZE, NUM_CELLS):
if FIELD == 0:
print("Matrix generation not implemented for GF(2^n).")
exit(1)
elif FIELD == 1:
mds_matrix = create_mds_p(FIELD_SIZE, NUM_CELLS)
result_1 = algorithm_1(mds_matrix, NUM_CELLS)
result_2 = algorithm_2(mds_matrix, NUM_CELLS)
result_3 = algorithm_3(mds_matrix, NUM_CELLS)
while result_1[0] == False or result_2[0] == False or result_3[0] == False:
mds_matrix = create_mds_p(FIELD_SIZE, NUM_CELLS)
result_1 = algorithm_1(mds_matrix, NUM_CELLS)
result_2 = algorithm_2(mds_matrix, NUM_CELLS)
result_3 = algorithm_3(mds_matrix, NUM_CELLS)
return mds_matrix
def generate_matrix_full(NUM_CELLS):
M = None
if t == 2:
M = matrix.circulant(vector([F(2), F(1)]))
elif t == 3:
M = matrix.circulant(vector([F(2), F(1), F(1)]))
elif t == 4:
M = matrix(F, [[F(5), F(7), F(1), F(3)], [F(4), F(6), F(1), F(1)], [F(1), F(3), F(5), F(7)], [F(1), F(1), F(4), F(6)]])
elif (t % 4) == 0:
M = matrix(F, t, t)
# M_small = matrix.circulant(vector([F(3), F(2), F(1), F(1)]))
M_small = matrix(F, [[F(5), F(7), F(1), F(3)], [F(4), F(6), F(1), F(1)], [F(1), F(3), F(5), F(7)], [F(1), F(1), F(4), F(6)]])
small_num = t // 4
for i in range(0, small_num):
for j in range(0, small_num):
if i == j:
M[i*4:(i+1)*4,j*4:(j+1)*4] = 2* M_small
else:
M[i*4:(i+1)*4,j*4:(j+1)*4] = M_small
else:
print("Error: No matrix for these parameters.")
exit()
return M
def generate_matrix_partial(FIELD, FIELD_SIZE, NUM_CELLS): ## TODO: Prioritize small entries
entry_max_bit_size = FIELD_SIZE
if FIELD == 0:
print("Matrix generation not implemented for GF(2^n).")
exit(1)
elif FIELD == 1:
M = None
if t == 2:
M = matrix(F, [[F(2), F(1)], [F(1), F(3)]])
elif t == 3:
M = matrix(F, [[F(2), F(1), F(1)], [F(1), F(2), F(1)], [F(1), F(1), F(3)]])
else:
M_circulant = matrix.circulant(vector([F(0)] + [F(1) for _ in range(0, NUM_CELLS - 1)]))
M_diagonal = matrix.diagonal([F(grain_random_bits(entry_max_bit_size)) for _ in range(0, NUM_CELLS)])
M = M_circulant + M_diagonal
# while algorithm_1(M, NUM_CELLS)[0] == False or algorithm_2(M, NUM_CELLS)[0] == False or algorithm_3(M, NUM_CELLS)[0] == False:
while check_minpoly_condition(M, NUM_CELLS) == False:
M_diagonal = matrix.diagonal([F(grain_random_bits(entry_max_bit_size)) for _ in range(0, NUM_CELLS)])
M = M_circulant + M_diagonal
if(algorithm_1(M, NUM_CELLS)[0] == False or algorithm_2(M, NUM_CELLS)[0] == False or algorithm_3(M, NUM_CELLS)[0] == False):
print("Error: Generated partial matrix is not secure w.r.t. subspace trails.")
exit()
return M
def generate_matrix_partial_small_entries(FIELD, FIELD_SIZE, NUM_CELLS):
if FIELD == 0:
print("Matrix generation not implemented for GF(2^n).")
exit(1)
elif FIELD == 1:
M_circulant = matrix.circulant(vector([F(0)] + [F(1) for _ in range(0, NUM_CELLS - 1)]))
combinations = list(itertools.product(range(2, 6), repeat=NUM_CELLS))
for entry in combinations:
M = M_circulant + matrix.diagonal(vector(F, list(entry)))
print(M)
# if M.is_invertible() == False or algorithm_1(M, NUM_CELLS)[0] == False or algorithm_2(M, NUM_CELLS)[0] == False or algorithm_3(M, NUM_CELLS)[0] == False:
if M.is_invertible() == False or check_minpoly_condition(M, NUM_CELLS) == False:
continue
return M
def matrix_partial_m_1(matrix_partial, NUM_CELLS):
M_circulant = matrix.identity(F, NUM_CELLS)
return matrix_partial - M_circulant
def print_linear_layer(M, n, t):
print("n:", n)
print("t:", t)
print("N:", (n * t))
print("Result Algorithm 1:\n", algorithm_1(M, NUM_CELLS))
print("Result Algorithm 2:\n", algorithm_2(M, NUM_CELLS))
print("Result Algorithm 3:\n", algorithm_3(M, NUM_CELLS))
hex_length = int(ceil(float(n) / 4)) + 2 # +2 for "0x"
print("Prime number:", "0x" + hex(PRIME_NUMBER))
matrix_string = "["
for i in range(0, t):
matrix_string += str(["{0:#0{1}x}".format(int(entry), hex_length) for entry in M[i]])
if i < (t-1):
matrix_string += ","
matrix_string += "]"
print("MDS matrix:\n", matrix_string)
def calc_equivalent_matrices(MDS_matrix_field):
# Following idea: Split M into M' * M'', where M'' is "cheap" and M' can move before the partial nonlinear layer
# The "previous" matrix layer is then M * M'. Due to the construction of M', the M[0,0] and v values will be the same for the new M' (and I also, obviously)
# Thus: Compute the matrices, store the w_hat and v_hat values
MDS_matrix_field_transpose = MDS_matrix_field.transpose()
w_hat_collection = []
v_collection = []
v = MDS_matrix_field_transpose[[0], list(range(1,t))]
M_mul = MDS_matrix_field_transpose
M_i = matrix(F, t, t)
for i in range(R_P_FIXED - 1, -1, -1):
M_hat = M_mul[list(range(1,t)), list(range(1,t))]
w = M_mul[list(range(1,t)), [0]]
v = M_mul[[0], list(range(1,t))]
v_collection.append(v.list())
w_hat = M_hat.inverse() * w
w_hat_collection.append(w_hat.list())
# Generate new M_i, and multiplication M * M_i for "previous" round
M_i = matrix.identity(t)
M_i[list(range(1,t)), list(range(1,t))] = M_hat
M_mul = MDS_matrix_field_transpose * M_i
return M_i, v_collection, w_hat_collection, MDS_matrix_field_transpose[0, 0]
def calc_equivalent_constants(constants, MDS_matrix_field):
constants_temp = [constants[index:index+t] for index in range(0, len(constants), t)]
MDS_matrix_field_transpose = MDS_matrix_field.transpose()
# Start moving round constants up
# Calculate c_i' = M^(-1) * c_(i+1)
# Split c_i': Add c_i'[0] AFTER the S-box, add the rest to c_i
# I.e.: Store c_i'[0] for each of the partial rounds, and make c_i = c_i + c_i' (where now c_i'[0] = 0)
num_rounds = R_F_FIXED + R_P_FIXED
R_f = R_F_FIXED / 2
for i in range(num_rounds - 2 - R_f, R_f - 1, -1):
inv_cip1 = list(vector(constants_temp[i+1]) * MDS_matrix_field_transpose.inverse())
constants_temp[i] = list(vector(constants_temp[i]) + vector([0] + inv_cip1[1:]))
constants_temp[i+1] = [inv_cip1[0]] + [0] * (t-1)
return constants_temp
def poseidon(input_words, matrix, round_constants):
R_f = int(R_F_FIXED / 2)
round_constants_counter = 0
state_words = list(input_words)
# First full rounds
for r in range(0, R_f):
# Round constants, nonlinear layer, matrix multiplication
for i in range(0, t):
state_words[i] = state_words[i] + round_constants[round_constants_counter]
round_constants_counter += 1
for i in range(0, t):
state_words[i] = (state_words[i])^alpha
state_words = list(matrix * vector(state_words))
# Middle partial rounds
for r in range(0, R_P_FIXED):
# Round constants, nonlinear layer, matrix multiplication
for i in range(0, t):
state_words[i] = state_words[i] + round_constants[round_constants_counter]
round_constants_counter += 1
state_words[0] = (state_words[0])^alpha
state_words = list(matrix * vector(state_words))
# Last full rounds
for r in range(0, R_f):
# Round constants, nonlinear layer, matrix multiplication
for i in range(0, t):
state_words[i] = state_words[i] + round_constants[round_constants_counter]
round_constants_counter += 1
for i in range(0, t):
state_words[i] = (state_words[i])^alpha
state_words = list(matrix * vector(state_words))
return state_words
def poseidon2(input_words, matrix_full, matrix_partial, round_constants):
R_f = int(R_F_FIXED / 2)
round_constants_counter = 0
state_words = list(input_words)
# First matrix mul
state_words = list(matrix_full * vector(state_words))
# First full rounds
for r in range(0, R_f):
# Round constants, nonlinear layer, matrix multiplication
for i in range(0, t):
state_words[i] = state_words[i] + round_constants[round_constants_counter]
round_constants_counter += 1
for i in range(0, t):
state_words[i] = (state_words[i])^alpha
state_words = list(matrix_full * vector(state_words))
# Middle partial rounds
for r in range(0, R_P_FIXED):
# Round constants, nonlinear layer, matrix multiplication
for i in range(0, t):
state_words[i] = state_words[i] + round_constants[round_constants_counter]
round_constants_counter += 1
state_words[0] = (state_words[0])^alpha
state_words = list(matrix_partial * vector(state_words))
# Last full rounds
for r in range(0, R_f):
# Round constants, nonlinear layer, matrix multiplication
for i in range(0, t):
state_words[i] = state_words[i] + round_constants[round_constants_counter]
round_constants_counter += 1
for i in range(0, t):
state_words[i] = (state_words[i])^alpha
state_words = list(matrix_full * vector(state_words))
return state_words
# Init
init_generator(FIELD, SBOX, FIELD_SIZE, NUM_CELLS, R_F_FIXED, R_P_FIXED)
# Round constants
round_constants = generate_constants(FIELD, FIELD_SIZE, NUM_CELLS, R_F_FIXED, R_P_FIXED, PRIME_NUMBER)
# print_round_constants(round_constants, FIELD_SIZE, FIELD)
# Matrix
# MDS = generate_matrix(FIELD, FIELD_SIZE, NUM_CELLS)
MATRIX_FULL = generate_matrix_full(NUM_CELLS)
MATRIX_PARTIAL = generate_matrix_partial(FIELD, FIELD_SIZE, NUM_CELLS)
MATRIX_PARTIAL_DIAGONAL_M_1 = [matrix_partial_m_1(MATRIX_PARTIAL, NUM_CELLS)[i,i] for i in range(0, NUM_CELLS)]
def to_hex(value):
l = len(hex(p - 1))
if l % 2 == 1:
l = l + 1
value = hex(int(value))[2:]
value = "0x" + value.zfill(l - 2)
print("from_hex(\"{}\"),".format(value))
print("use super::poseidon::PoseidonParams;")
print("use bellman_ce::pairing::{bls12_381::Bls12, ff::ScalarEngine, from_hex};")
print("type Scalar = <Bls12 as ScalarEngine>::Fr;")
print("use lazy_static::lazy_static;")
print("use std::sync::Arc;")
print()
print("lazy_static! {")
# # MDS
# print("pub static ref MDS{}: Vec<Vec<Scalar>> = vec![".format(t))
# for vec in MDS:
# print("vec![", end="")
# for val in vec:
# to_hex(val)
# print("],")
# print("];")
# print()
# Efficient partial matrix (diagonal - 1)
print("pub static ref MAT_DIAG{}_M_1: Vec<Scalar> = vec![".format(t))
for val in MATRIX_PARTIAL_DIAGONAL_M_1:
to_hex(val)
print("];")
print()
# Efficient partial matrix (full)
print("pub static ref MAT_INTERNAL{}: Vec<Vec<Scalar>> = vec![".format(t))
for vec in MATRIX_PARTIAL:
print("vec![", end="")
for val in vec:
to_hex(val)
print("],")
print("];")
print()
# Round constants
print("pub static ref RC{}: Vec<Vec<Scalar>> = vec![".format(t))
for (i,val) in enumerate(round_constants):
if i % t == 0:
print("vec![", end="")
to_hex(val)
if i % t == t - 1:
print("],")
print("];")
print()
print("pub static ref POSEIDON_{}_PARAMS: Arc<PoseidonParams<Scalar>> = Arc::new(PoseidonParams::new({}, {}, {}, {}, &MAT_DIAG{}_M_1, &RC{}));".format(t, t, alpha, R_F_FIXED, R_P_FIXED , t, t))
print("}")
print()
print()
state_in = vector([F(i) for i in range(t)])
# state_out = poseidon(state_in, MDS, round_constants)
state_out = poseidon2(state_in, MATRIX_FULL, MATRIX_PARTIAL, round_constants)
for (i,val) in enumerate(state_in):
if i % t == 0:
print("vec![", end="")
to_hex(val)
if i % t == t - 1:
print("],")
print("];")
for (i,val) in enumerate(state_out):
if i % t == 0:
print("vec![", end="")
to_hex(val)
if i % t == t - 1:
print("],")
print("];")