forked from DiSlord/NanoVNA-D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
measure.c
710 lines (647 loc) · 25 KB
/
measure.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
/*
* Copyright (c) 2019-2023, Dmitry (DiSlord) [email protected]
* All rights reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* The software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef __VNA_MEASURE_MODULE__
// Use size optimization (module not need fast speed, better have smallest size)
#pragma GCC push_options
#pragma GCC optimize ("Os")
// Memory for measure cache data
static char measure_memory[128];
// Measure math functions
// quadratic function solver
static void match_quadratic_equation(float a, float b, float c, float *x) {
const float a_x_2 = 2.0f * a;
const float d = (b * b) - (2.0f * a_x_2 * c);
if (d < 0){
x[0] = x[1] = 0.0f;
return;
}
const float sd = vna_sqrtf(d);
x[0] = (-b + sd) / a_x_2;
x[1] = (-b - sd) / a_x_2;
}
// Search functions
// Type of get value function
typedef float (*get_value_t)(uint16_t idx);
// Search point get_value(x) = y
// Used bilinear interpolation, return value = frequency of this point
#define MEASURE_SEARCH_LEFT -1
#define MEASURE_SEARCH_RIGHT 1
static float measure_search_value(uint16_t *idx, float y, get_value_t get, int16_t mode, int16_t marker_idx) {
uint16_t x = *idx;
float y1, y2, y3;
y1 = y2 = y3 = get(x);
bool result = (y3 > y); // current position depend from start point
for(; x < sweep_points; x+=mode) {
y3 = get(x);
if(result != (y3 > y)) break;
y1 = y2;
y2 = y3;
}
if (x >= sweep_points) return 0;
x-=mode;
*idx = x;
set_marker_index(marker_idx, x);
// Now y1 > y, y2 > y, y3 <= y or y1 < y, y2 < y, y3 >= y
const float a = 0.5f * (y1 + y3) - y2;
const float b = 0.5f * (y3 - y1);
const float c = y2 - y;
float r[2];
match_quadratic_equation(a, b, c, r);
// Select result in middle 0 and 1 (in middle y2 and y3 result)
float res = (r[0] > 0 && r[0] < 1.0) ? r[0] : r[1];
// for search left need swap y1 and y3 points (use negative result)
if (mode < 0) res=-res;
return getFrequency(x) + getFrequencyStep() * res;
}
// Peak search, use bilinear interpolation for peak detect
#define MEASURE_SEARCH_MIN 0
#define MEASURE_SEARCH_MAX 1
static bool _greaterf(float x, float y) { return x > y; }
static bool _lesserf(float x, float y) { return x < y; }
static float search_peak_value(uint16_t *xp, get_value_t get, bool mode) {
bool (*compare)(float x, float y) = mode ? _greaterf : _lesserf;
uint16_t x = 0;
float y2 = get(x), ytemp;
for(int i = 1; i < sweep_points; i++) {
if(compare(ytemp = get(i), y2)) {
y2 = ytemp;
x = i;
}
}
if (x < 1 || x >= sweep_points - 1) return y2;
*xp = x;
float y1 = get(x-1);
float y3 = get(x+1);
if (y1 == y3) return y2;
// const float a = 0.5f * (y1 + y3) - y2;
// const float b = 0.5f * (y3 - y1);
// const float c = y2;
// return c - b*b/(4*a);
const float a = 8.0f * (y1 - 2.0f * y2 + y3);
const float b = y3 - y1;
const float c = y2;
return c - b * b / a;
}
static float bilinear_interpolation(float y1, float y2, float y3, float x) {
const float a = 0.5f * (y1 + y3) - y2;
const float b = 0.5f * (y3 - y1);
const float c = y2;
return a * x * x + b * x + c;
}
static bool measure_get_value(uint16_t ch, freq_t f, float *data){
if (f < frequency0 || f > frequency1)
return false;
// Search k1
uint16_t _points = sweep_points - 1;
freq_t span = frequency1 - frequency0;
uint32_t idx = (uint64_t)(f - frequency0) * (uint64_t)_points / span;
if (idx < 1 && idx > _points)
return false;
uint64_t v = (uint64_t)span * idx + _points/2;
freq_t src_f0 = frequency0 + (v ) / _points;
freq_t src_f1 = frequency0 + (v + span) / _points;
freq_t delta = src_f1 - src_f0;
float k1 = (delta == 0) ? 0.0f : (float)(f - src_f0) / delta;
#if 1
// Bilinear interpolation by k1
data[0] = bilinear_interpolation(measured[ch][idx-1][0], measured[ch][idx ][0], measured[ch][idx+1][0],k1);
data[1] = bilinear_interpolation(measured[ch][idx-1][1], measured[ch][idx ][1], measured[ch][idx+1][1],k1);
#else
// Linear Interpolate by k1
float k0 = 1.0 - k1;
data[0] = measured[ch][idx][0] * k0 + measured[ch][idx+1][0] * k1;
data[1] = measured[ch][idx][1] * k0 + measured[ch][idx+1][1] * k1;
#endif
return true;
}
#ifdef __USE_LC_MATCHING__
// calculate physical component values to match an impendace to 'ref_impedance' (ie 50R)
typedef struct
{
float xps; // Reactance parallel to source (can be NAN if not applicable)
float xs; // Serial reactance (can be 0.0 if not applicable)
float xpl; // Reactance parallel to load (can be NAN if not applicable)
} t_lc_match;
typedef struct
{
freq_t Hz;
float R0;
// L-Network solution structure
t_lc_match matches[4];
int16_t num_matches;
} lc_match_array_t;
// Size = 60 bytes
static lc_match_array_t *lc_match_array = (lc_match_array_t *)measure_memory;
// Calculate two solutions for ZL where (R + X * X / R) > R0
static void lc_match_calc_hi(float R0, float RL, float XL, t_lc_match *matches) {
float xp[2];
const float a = R0 - RL;
const float b = 2.0f * XL * R0;
const float c = R0 * (XL * XL + RL * RL);
match_quadratic_equation(a, b, c, xp);
// found two impedances parallel to load
//
// now calculate serial impedances
const float XL1 = XL + xp[0];
matches[0].xs = xp[0] * xp[0] * XL1 / (RL * RL + XL1 * XL1) - xp[0];
matches[0].xps = 0.0f;
matches[0].xpl = xp[0];
const float XL2 = XL + xp[1];
matches[1].xs = xp[1] * xp[1] * XL2 / (RL * RL + XL2 * XL2) - xp[1];
matches[1].xps = 0.0f;
matches[1].xpl = xp[1];
}
// Calculate two solutions for ZL where R < R0
static void lc_match_calc_lo(float R0, float RL, float XL, t_lc_match *matches) {
float xs[2];
// Calculate Xs
const float a = 1.0f;
const float b = 2.0f * XL;
const float c = RL * RL + XL * XL - R0 * RL;
match_quadratic_equation(a, b, c, xs);
// got two serial impedances that change ZL to the Y.real = 1/R0
//
// now calculate impedances parallel to source
const float XL1 = XL + xs[0];
const float RL1 = RL - R0;
matches[0].xs = xs[0];
matches[0].xps = - R0 * R0 * XL1 / (RL1 * RL1 + XL1 * XL1);
matches[0].xpl = 0.0f;
const float XL2 = XL + xs[1];
matches[1].xs = xs[1];
matches[1].xps = - R0 * R0 * XL2 / (RL1 * RL1 + XL2 * XL2);
matches[1].xpl = 0.0f;
}
static int16_t lc_match_calc(int index) {
const float R0 = lc_match_array->R0;
// compute the impedance at the chosen frequency
const float *coeff = measured[0][index];
const float RL = resistance(index, coeff);
const float XL = reactance(index, coeff);
if (RL <= 0.5f)
return -1;
const float q_factor = XL / RL;
const float vswr = swr(index, coeff);
// no need for any matching
if (vswr <= 1.1f || q_factor >= 100.0f)
return 0;
// only one solution is enough: just a serial reactance
// this gives SWR < 1.1 if R is within the range 0.91 .. 1.1 of R0
t_lc_match *matches = lc_match_array->matches;
if ((RL * 1.1f) > R0 && RL < (R0 * 1.1f)) {
matches[0].xpl = 0.0f;
matches[0].xps = 0.0f;
matches[0].xs = -XL;
return 1;
}
int16_t n = 0;
if (RL >= R0 || RL * RL + XL * XL > R0 * RL) {
lc_match_calc_hi(R0, RL, XL, &matches[0]); // Compute Hi-Z solutions
if (RL >= R0) return 2; // Only Hi-Z solution present
n = 2;
}
lc_match_calc_lo(R0, RL, XL, &matches[n]); // Compute Lo-Z solutions
return n + 2;
}
static void prepare_lc_match(uint8_t mode, uint8_t update_mask) {
(void)mode;
(void)update_mask;
// Made calculation only one time for current sweep and frequency
freq_t freq = get_marker_frequency(active_marker);
if (freq == 0)// || lc_match_array->Hz == freq)
return;
lc_match_array->R0 = PORT_Z; // 50.0f
lc_match_array->Hz = freq;
// compute the possible LC matches
lc_match_array->num_matches = lc_match_calc(markers[active_marker].index);
// Mark to redraw area under L/C match text
invalidate_rect(STR_MEASURE_X , STR_MEASURE_Y,
STR_MEASURE_X + 3 * STR_MEASURE_WIDTH, STR_MEASURE_Y + (4 + 2) * STR_MEASURE_HEIGHT);
}
//
static void lc_match_x_str(uint32_t FHz, float X, int xp, int yp)
{
if (isnan(X) || 0.0f == X || -0.0f == X)
return;
char type;
#if 0
float val;
if (X < 0.0f) {val = 1.0f / (2.0f * VNA_PI * FHz * -X); type = S_FARAD[0];}
else {val = X / (2.0f * VNA_PI * FHz); type = S_HENRY[0];}
#else
if (X < 0.0f) {X = -1.0f / X; type = S_FARAD[0];}
else { type = S_HENRY[0];}
float val = X / ((2.0f * VNA_PI) * FHz);
#endif
cell_printf(xp, yp, "%4.2F%c", val, type);
}
// Render L/C match to cell
static void draw_lc_match(int xp, int yp) {
cell_printf(xp, yp, "L/C match for source Z0 = %0.1f" S_OHM, lc_match_array->R0);
#if 0
yp += STR_MEASURE_HEIGHT;
cell_printf(xp, yp, "%q" S_Hz " %0.1f %c j%0.1f" S_OHM, match_array->Hz, match_array->RL, (match_array->XL >= 0) ? '+' : '-', vna_fabsf(match_array->XL));
#endif
yp += STR_MEASURE_HEIGHT;
if (yp >= CELLHEIGHT) return;
if (lc_match_array->num_matches < 0)
cell_printf(xp, yp, "No LC match for this");
else if (lc_match_array->num_matches == 0)
cell_printf(xp, yp, "No need for LC match");
else {
cell_printf(xp , yp, "Src shunt" );
cell_printf(xp + STR_MEASURE_WIDTH, yp, "Series" );
cell_printf(xp + 2*STR_MEASURE_WIDTH, yp, "Load shunt");
for (int i = 0; i < lc_match_array->num_matches; i++){
yp += STR_MEASURE_HEIGHT;
if (yp >= CELLHEIGHT) return;
lc_match_x_str(lc_match_array->Hz, lc_match_array->matches[i].xps, xp , yp);
lc_match_x_str(lc_match_array->Hz, lc_match_array->matches[i].xs , xp + STR_MEASURE_WIDTH, yp);
lc_match_x_str(lc_match_array->Hz, lc_match_array->matches[i].xpl, xp + 2*STR_MEASURE_WIDTH, yp);
}
}
}
#endif // __USE_LC_MATCHING__
#ifdef __S21_MEASURE__
typedef struct {
const char *header;
freq_t freq; // resonant frequency
freq_t freq1; // fp
float l;
float c;
float c1; // capacitor parallel
float r;
float q; // Q factor
// freq_t f1;
// freq_t f2;
// float tan45;
} s21_analysis_t;
static s21_analysis_t *s21_measure = (s21_analysis_t *)measure_memory;
static float s21pow2(uint16_t i) {
const float re = measured[1][i][0]; // S21 real
const float im = measured[1][i][1]; // S21 imaginary
return re*re+im*im; // S21^2
}
static float s21tan(uint16_t i) {
const float re = measured[1][i][0]; // S21 real
const float im = measured[1][i][1]; // S21 imaginary
return im/re; // tan(S21)
}
static float s21logmag(uint16_t i) {
return logmag(i, measured[1][i]);
}
// Phase Shift Measurement
// https://www.mikrocontroller.net/attachment/473317/Crystal_Motional_Parameters.pdf
static void analysis_lcshunt(void) {
uint16_t xp = 0, x2;
s21_measure->header = "LC-SHUNT";
// Minimum search
float ypeak = search_peak_value(&xp, s21pow2, MEASURE_SEARCH_MIN);
// peak frequency, R
float att = vna_sqrtf(ypeak);
s21_measure->r = config._measure_r * att / (2.0f * (1.0f - att));
if(s21_measure->r < 0.0f) return;
set_marker_index(0, xp);
float tan45 = config._measure_r/(config._measure_r + 4.0f * s21_measure->r);
// s21_measure->tan45 = tan45;
// -45 degree search at left
x2 = xp;
float f1 = measure_search_value(&x2, -tan45, s21tan, MEASURE_SEARCH_LEFT, 1);
if (f1 == 0) return;
// +45 degree search at right
x2 = xp;
float f2 = measure_search_value(&x2, tan45, s21tan, MEASURE_SEARCH_RIGHT, 2);
if (f2 == 0) return;
// L, C, Q calculations
float bw = f2 - f1;
float fpeak = vna_sqrtf(f2 * f1);
s21_measure->freq = fpeak;
s21_measure->q = fpeak / bw;
s21_measure->l = s21_measure->r / ((2.0f * VNA_PI) * bw);
s21_measure->c = bw / ((2.0f * VNA_PI) * fpeak * fpeak * s21_measure->r);
}
static void analysis_lcseries(void) {
uint16_t xp=0, x2;
s21_measure->header = "LC-SERIES";
// Peak value and it frequency index search
float ypeak = search_peak_value(&xp, s21pow2, MEASURE_SEARCH_MAX);
if (xp == 0) return; // peak not found
// motional resistance, Rm
s21_measure->r = 2 * config._measure_r * (1.0f / vna_sqrtf(ypeak) - 1.0f);
if(s21_measure->r < 0) return;
set_marker_index(0, xp);
const float tan45 = 1.0f; // tang(45) = 1.0f
// Lookup +45 phase at left of xp index
x2 = xp;
float f1 = measure_search_value(&x2, tan45, s21tan, MEASURE_SEARCH_LEFT, 1);
if (f1 == 0) return; // not found
// Lookup -45 phase at right of xp index
x2 = xp;
float f2 = measure_search_value(&x2, -tan45, s21tan, MEASURE_SEARCH_RIGHT, 2);
if (f2 == 0) return; // not found
// L, C, Q calculation
float bw = f2 - f1;
float fpeak = vna_sqrtf(f2 * f1);
// The total resistance, REFF, seen by the crystal is the sum of the load resistance (input and output) and the motional resistance, Rm:
float reff = 2.0f * config._measure_r + s21_measure->r;
s21_measure->freq = fpeak;
s21_measure->l = reff / ((2.0f * VNA_PI) * bw);
s21_measure->c = bw / ((2.0f * VNA_PI) * fpeak * fpeak * reff);
// q = 2 * pi * Fp * Ls / R
s21_measure->q = (2.0f * VNA_PI) * fpeak * s21_measure->l / s21_measure->r;
// s21_measure->f1 = f1;
// s21_measure->f2 = f2;
}
static void analysis_xtalseries(void) {
analysis_lcseries();
s21_measure->header = "XTAL-SERIES";
// search S21 min
uint16_t xp=0;
search_peak_value(&xp, s21pow2, MEASURE_SEARCH_MIN);
if (xp == 0) return;
set_marker_index(3, xp);
freq_t freq1 = getFrequency(xp);
if(freq1 < s21_measure->freq) return;
s21_measure->freq1 = freq1;
// df = f * c / (2 * c1) => c1 = f * c / (2 * df)
s21_measure->c1 = s21_measure->c * s21_measure->freq / (2.0f * (s21_measure->freq1 - s21_measure->freq));
}
static void draw_serial_result(int xp, int yp) {
cell_printf(xp, yp, s21_measure->header);
yp+=STR_MEASURE_HEIGHT;
if (s21_measure->freq == 0 && s21_measure->freq1 == 0) {
cell_printf(xp, yp, "Not found");
return;
}
if (s21_measure->freq)
{
cell_printf(xp, yp , "Fs=%q" S_Hz, s21_measure->freq);
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "Lm=%F" S_HENRY " Cm=%F" S_FARAD " Rm=%F" S_OHM, s21_measure->l, s21_measure->c, s21_measure->r);
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "Q=%.3f", s21_measure->q);
// cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "tan45=%.4f", s21_measure->tan45);
// cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "F1=%q" S_Hz " F2=%q" S_Hz, s21_measure->f1, s21_measure->f2);
}
if (s21_measure->freq1){
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "Fp=%q" S_Hz, s21_measure->freq1);
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "Cp=%F" S_FARAD, s21_measure->c1);
}
}
static void prepare_series(uint8_t type, uint8_t update_mask) {
(void)update_mask;
uint16_t n;
// for detect completion
s21_measure->freq = 0;
s21_measure->freq1 = 0;
switch (type){
case MEASURE_SHUNT_LC: n = 4; analysis_lcshunt(); break;
case MEASURE_SERIES_LC: n = 4; analysis_lcseries(); break;
case MEASURE_SERIES_XTAL: n = 6; analysis_xtalseries(); break;
default: return;
}
// Prepare for update
invalidate_rect(STR_MEASURE_X , STR_MEASURE_Y,
STR_MEASURE_X + 3 * STR_MEASURE_WIDTH, STR_MEASURE_Y + n * STR_MEASURE_HEIGHT);
markmap_all_markers();
}
enum {_3dB = 0, _6dB, _10dB, _20dB/*, _60dB*/, _end};
static const float filter_att[_end] = {3.0f , 6.0f, 10.0f, 20.0f/*, 60.0f*/};
typedef struct {
float f[_end]; // freq array for -3, -6, -10, -20, -60 dB logmag
float decade;
float octave;
} s21_pass;
typedef struct {
float fmax;
float vmax;
s21_pass lo_pass;
s21_pass hi_pass;
// Band pass filter data
float f_center;
float bw_3dB;
float bw_6dB;
float q;
} s21_filter_measure_t;
static s21_filter_measure_t *s21_filter = (s21_filter_measure_t *)measure_memory;
static void draw_s21_pass(int xp, int yp, s21_pass *p, const char *name) {
cell_printf(xp, yp, name);
if (p->f[_3dB]) cell_printf(xp, yp + STR_MEASURE_HEIGHT, "%.6F" S_Hz, p->f[_3dB]);
if (p->f[_6dB]) cell_printf(xp, yp + 2*STR_MEASURE_HEIGHT, "%.6F" S_Hz, p->f[_6dB]);
yp+= 3 * STR_MEASURE_HEIGHT;
if (p->decade) {
cell_printf(xp, yp , "%F" S_dB "/dec", p->decade);
cell_printf(xp, yp + STR_MEASURE_HEIGHT, "%F" S_dB "/oct", p->octave);
}
}
#define S21_MEASURE_FILTER_THRESHOLD -50.0f
static void draw_filter_result(int xp, int yp){
cell_printf(xp, yp, "S21 FILTER");
if (s21_filter->vmax < S21_MEASURE_FILTER_THRESHOLD) return;
yp+= STR_MEASURE_HEIGHT;
// f: ___.___MHz (xxxdB)
// Bw(-3dB): ___.___MHz
// Bw(-6dB): ___.___MHz
// Q: xxx
if (s21_filter->f_center) {
cell_printf(xp, yp, "f: %.6F" S_Hz " (%F" S_dB ")", s21_filter->f_center, s21_filter->vmax);
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "Bw (-%d" S_dB "): %.6F" S_Hz, 3, s21_filter->bw_3dB);
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "Bw (-%d" S_dB "): %.6F" S_Hz, 6, s21_filter->bw_6dB);
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "Q: %F", s21_filter->q);
} else {
cell_printf(xp, yp, "f: %.6F" S_Hz " (%F" S_dB ")", s21_filter->fmax, s21_filter->vmax);
}
// Lo/Hi pass data show
const int width0 = 3 * STR_MEASURE_WIDTH * 2 / 10; // 1 column width 20%
const int width1 = 3 * STR_MEASURE_WIDTH * 4 / 10; // 2 and 3 column 40%
// 20% | 40% | 40%
// Low-side High-side
// f(-3) ___.___MHz ___.___MHz
// f(-6) ___.___MHz ___.___MHz
// Roll: ___dB/dec ___dB/oct
// ___dB/dec ___dB/oct
if (s21_filter->lo_pass.f[_3dB] || s21_filter->hi_pass.f[_3dB]) {
yp+= STR_MEASURE_HEIGHT;
cell_printf(xp, yp + 1 * STR_MEASURE_HEIGHT, "f(-%d):", 3);
cell_printf(xp, yp + 2 * STR_MEASURE_HEIGHT, "f(-%d):", 6);
cell_printf(xp, yp + 3 * STR_MEASURE_HEIGHT, "Roll:");
xp+= width0;
if (s21_filter->hi_pass.f[_3dB]) {draw_s21_pass(xp, yp, &s21_filter->hi_pass, s21_filter->f_center ? "Low-side" : "High-pass"); xp+= width1; }
if (s21_filter->lo_pass.f[_3dB]) {draw_s21_pass(xp, yp, &s21_filter->lo_pass, s21_filter->f_center ? "High-side" : "Low-pass"); }
}
}
static void find_filter_pass(float max, s21_pass *p, uint16_t idx, int16_t mode) {
// Fill frequency for all in filter_att (-3, -6, -10, -20, -60 dB) logmag
for (int i = 0; i < _end; i++)
p->f[i] = measure_search_value(&idx, max - filter_att[i], s21logmag, mode, i == 0 ? (mode == MEASURE_SEARCH_LEFT ? 1 : 2) : MARKER_INVALID);
// Reset Roll-off data
p->decade = p->octave = 0.0f;
if (p->f[_10dB] != 0 && p->f[_20dB] != 0) {
float k = vna_fabsf(vna_logf(p->f[_20dB]) - vna_logf(p->f[_10dB]));
// decade = delta / log10(f1 / f2) = delta / (log10(f1) - log10(f2)) = delta * log(10) / (log(f1) - log(f2))
p->decade = (10.0f * logf(10.0f)) / k;
// octave = decade * log10(2) = decade * log(2) / log(10) = delta * log(2) / (log(f1) - log(f2))
p->octave = (10.0f * logf( 2.0f)) / k;
}
}
static void prepare_filter(uint8_t type, uint8_t update_mask) {
(void)type;
(void)update_mask;
uint16_t xp = 0;
s21_filter->vmax = search_peak_value(&xp, s21logmag, MEASURE_SEARCH_MAX); // Maximum search
// If maximum < 50dB, no filter detected
if (s21_filter->vmax >= S21_MEASURE_FILTER_THRESHOLD) {
set_marker_index(0, xp); // Put marker on maximum value point
s21_filter->fmax = getFrequency(xp); // Get maximum value frequency
find_filter_pass(s21_filter->vmax, &s21_filter->hi_pass, xp, MEASURE_SEARCH_LEFT); // Search High-pass filter data (or Low side for bandpass)
find_filter_pass(s21_filter->vmax, &s21_filter->lo_pass, xp, MEASURE_SEARCH_RIGHT);// Search Low-pass filter data (or High side for bandpass)
// Calculate Band-pass filter data
s21_filter->f_center = s21_filter->lo_pass.f[_3dB] * s21_filter->hi_pass.f[_3dB]; // Center frequency (if 0, one or both points not found)
if (s21_filter->f_center) {
s21_filter->bw_3dB = s21_filter->lo_pass.f[_3dB] - s21_filter->hi_pass.f[_3dB];
s21_filter->bw_6dB = s21_filter->lo_pass.f[_6dB] - s21_filter->hi_pass.f[_6dB];
s21_filter->f_center = vna_sqrtf(s21_filter->f_center);
s21_filter->q = s21_filter->f_center / s21_filter->bw_3dB;
}
}
// Prepare for update
invalidate_rect(STR_MEASURE_X , STR_MEASURE_Y,
STR_MEASURE_X + 3 * STR_MEASURE_WIDTH, STR_MEASURE_Y + 10 * STR_MEASURE_HEIGHT);
}
#endif // __S21_MEASURE__
#ifdef __S11_CABLE_MEASURE__
typedef struct {
float R;
float len;
float loss;
float vf;
float C0;
float a, b, c;
} s11_cable_measure_t;
static s11_cable_measure_t *s11_cable = (s11_cable_measure_t *)measure_memory;
float real_cable_len = 0.0f;
static float s11imag(uint16_t i) {
return measured[0][i][1];
}
static void draw_s11_cable(int xp, int yp){
cell_printf(xp, yp, "S11 CABLE");
if (s11_cable->R){
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "Z0 = %F" S_OHM, s11_cable->R);
// cell_printf(xp, yp+=FONT_STR_HEIGHT, "C0 = %F" S_FARAD, s11_cable->C0);
}
if (s11_cable->vf)
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "VF=%.2f%% (Length = %F" S_METRE ")", s11_cable->vf, real_cable_len);
else if (s11_cable->len)
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "Length = %F" S_METRE " (VF=%d%%)", s11_cable->len, velocity_factor);
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "Loss = %F" S_dB, s11_cable->loss);
}
static void prepare_s11_cable(uint8_t type, uint8_t update_mask) {
(void)type;
freq_t f1;
if (update_mask & MEASURE_UPD_SWEEP) {
s11_cable->R = 0.0f;
s11_cable->len = 0.0f;
s11_cable->vf = 0.0f;
uint16_t x = 0;
f1 = measure_search_value(&x, 0, s11imag, MEASURE_SEARCH_RIGHT, MARKER_INVALID);
if (f1){
float electric_lengh = (SPEED_OF_LIGHT / 400.0f) / f1;
s11_cable->len = velocity_factor * electric_lengh;
if (real_cable_len != 0.0f) s11_cable->vf = real_cable_len / electric_lengh;
float data[2];
if (measure_get_value(0, f1/2, data)){
s11_cable->R = vna_fabsf(reactance(0, data));
// s11_cable->C0 = velocity_factor / (100.0f * SPEED_OF_LIGHT * s11_cable->R);
}
}
}
if ((update_mask & MEASURE_UPD_ALL) && active_marker != MARKER_INVALID) {
int idx = markers[active_marker].index;
s11_cable->loss = vna_fabsf(logmag(idx, measured[0][idx]) / 2.0f);
}
// Prepare for update
invalidate_rect(STR_MEASURE_X , STR_MEASURE_Y,
STR_MEASURE_X + 3 * STR_MEASURE_WIDTH, STR_MEASURE_Y + 4 * STR_MEASURE_HEIGHT);
}
#endif // __S11_CABLE_MEASURE__
#ifdef __S11_RESONANCE_MEASURE__
#define MEASURE_RESONANCE_COUNT 6
typedef struct {
struct {
freq_t f;
float r;
float x;
} data[MEASURE_RESONANCE_COUNT];
uint8_t count;
} s11_resonance_measure_t;
static s11_resonance_measure_t *s11_resonance = (s11_resonance_measure_t *)measure_memory;
static float s11_resonance_value(uint16_t i) {
return measured[0][i][1];
}
static float s11_resonance_min(uint16_t i) {
return fabsf(reactance(i, measured[0][i]));
}
static void draw_s11_resonance(int xp, int yp) {
cell_printf(xp, yp, "S11 RESONANCE");
if (s11_resonance->count == 0) {
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "Not found");
return;
}
for (int i = 0; i < s11_resonance->count; i++)
cell_printf(xp, yp+=STR_MEASURE_HEIGHT, "%q" S_Hz ", %F%+jF" S_OHM, s11_resonance->data[i].f, s11_resonance->data[i].r, s11_resonance->data[i].x);
}
static bool add_resonance_value(int i, uint16_t x, freq_t f) {
float data[2];
if (measure_get_value(0, f, data)) {
s11_resonance->data[i].f = f;
//set_marker_index(i, x);
s11_resonance->data[i].r = resistance(x, data);
s11_resonance->data[i].x = reactance(x, data);
return true;
}
return false;
}
static void prepare_s11_resonance(uint8_t type, uint8_t update_mask) {
(void)type;
if (update_mask & MEASURE_UPD_SWEEP) {
int i;
freq_t f;
uint16_t x = 0;
// Search resonances (X == 0)
for (i = 0; i < MEASURE_RESONANCE_COUNT && i < MARKERS_MAX;) {
f = measure_search_value(&x, 0.0f, s11_resonance_value, MEASURE_SEARCH_RIGHT, MARKER_INVALID);
if (f == 0) break;
if (add_resonance_value(i, x, f))
i++;
x++;
}
if (i == 0) { // Search minimum position, if resonances not found
x = 0;
search_peak_value(&x, s11_resonance_min, MEASURE_SEARCH_MIN);
if (x && add_resonance_value(0, x, getFrequency(x)))
i = 1;
}
s11_resonance->count = i;
}
// Prepare for update
invalidate_rect(STR_MEASURE_X , STR_MEASURE_Y,
STR_MEASURE_X + 3 * STR_MEASURE_WIDTH, STR_MEASURE_Y + (MEASURE_RESONANCE_COUNT + 1) * STR_MEASURE_HEIGHT);
}
#endif //__S11_RESONANCE_MEASURE__
#pragma GCC pop_options
#endif // __VNA_MEASURE_MODULE__