|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [ |
| 10 | + { |
| 11 | + "name": "stderr", |
| 12 | + "output_type": "stream", |
| 13 | + "text": [ |
| 14 | + "Using TensorFlow backend.\n" |
| 15 | + ] |
| 16 | + } |
| 17 | + ], |
| 18 | + "source": [ |
| 19 | + "from keras.models import load_model\n", |
| 20 | + "from keras_preprocessing.image import ImageDataGenerator\n", |
| 21 | + "import numpy as np\n", |
| 22 | + "from sklearn.metrics import confusion_matrix\n", |
| 23 | + "import cv2 as cv" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": 2, |
| 29 | + "metadata": { |
| 30 | + "collapsed": false |
| 31 | + }, |
| 32 | + "outputs": [ |
| 33 | + { |
| 34 | + "name": "stdout", |
| 35 | + "output_type": "stream", |
| 36 | + "text": [ |
| 37 | + "WARNING:tensorflow:From D:\\myenvs\\lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\nInstructions for updating:\nColocations handled automatically by placer.\n" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "name": "stdout", |
| 42 | + "output_type": "stream", |
| 43 | + "text": [ |
| 44 | + "WARNING:tensorflow:From D:\\myenvs\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.\nInstructions for updating:\nPlease use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.\n" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "name": "stdout", |
| 49 | + "output_type": "stream", |
| 50 | + "text": [ |
| 51 | + "WARNING:tensorflow:From D:\\myenvs\\lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\nInstructions for updating:\nUse tf.cast instead.\n" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "name": "stdout", |
| 56 | + "output_type": "stream", |
| 57 | + "text": [ |
| 58 | + "模型加载成功\n" |
| 59 | + ] |
| 60 | + } |
| 61 | + ], |
| 62 | + "source": [ |
| 63 | + "#加载模型\n", |
| 64 | + "\n", |
| 65 | + "model1 = load_model(\"weights/densenet_0023.h5\")\n", |
| 66 | + "model2 = load_model(\"weights/inceptionv3_0016.h5\")\n", |
| 67 | + "model3 = load_model(\"weights/mobilenetv2_0032.h5\")\n", |
| 68 | + "model4 = load_model(\"weights/nasnet_0017.h5\")\n", |
| 69 | + "model5 = load_model(\"weights/vgg19two_0027.h5\")\n", |
| 70 | + "\n", |
| 71 | + "print(\"模型加载成功\")" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": 17, |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [ |
| 79 | + { |
| 80 | + "name": "stdout", |
| 81 | + "output_type": "stream", |
| 82 | + "text": [ |
| 83 | + "Found 30 images belonging to 2 classes.\n" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "name": "stdout", |
| 88 | + "output_type": "stream", |
| 89 | + "text": [ |
| 90 | + "\r1/3 [=========>....................] - ETA: 0s" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "name": "stdout", |
| 95 | + "output_type": "stream", |
| 96 | + "text": [ |
| 97 | + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r2/3 [===================>..........] - ETA: 0s" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "name": "stdout", |
| 102 | + "output_type": "stream", |
| 103 | + "text": [ |
| 104 | + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r3/3 [==============================] - 0s 137ms/step\n" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "name": "stdout", |
| 109 | + "output_type": "stream", |
| 110 | + "text": [ |
| 111 | + "Found 30 images belonging to 2 classes.\n" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "name": "stdout", |
| 116 | + "output_type": "stream", |
| 117 | + "text": [ |
| 118 | + "\r1/3 [=========>....................] - ETA: 0s" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "name": "stdout", |
| 123 | + "output_type": "stream", |
| 124 | + "text": [ |
| 125 | + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r2/3 [===================>..........] - ETA: 0s" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "name": "stdout", |
| 130 | + "output_type": "stream", |
| 131 | + "text": [ |
| 132 | + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r3/3 [==============================] - 1s 169ms/step\n" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "name": "stdout", |
| 137 | + "output_type": "stream", |
| 138 | + "text": [ |
| 139 | + "Found 30 images belonging to 2 classes.\n" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "name": "stdout", |
| 144 | + "output_type": "stream", |
| 145 | + "text": [ |
| 146 | + "\r1/3 [=========>....................] - ETA: 0s" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "name": "stdout", |
| 151 | + "output_type": "stream", |
| 152 | + "text": [ |
| 153 | + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r2/3 [===================>..........] - ETA: 0s" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "name": "stdout", |
| 158 | + "output_type": "stream", |
| 159 | + "text": [ |
| 160 | + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r3/3 [==============================] - 0s 112ms/step\n" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "name": "stdout", |
| 165 | + "output_type": "stream", |
| 166 | + "text": [ |
| 167 | + "Found 30 images belonging to 2 classes.\n" |
| 168 | + ] |
| 169 | + }, |
| 170 | + { |
| 171 | + "name": "stdout", |
| 172 | + "output_type": "stream", |
| 173 | + "text": [ |
| 174 | + "\r1/3 [=========>....................] - ETA: 0s" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "name": "stdout", |
| 179 | + "output_type": "stream", |
| 180 | + "text": [ |
| 181 | + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r2/3 [===================>..........] - ETA: 0s" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "name": "stdout", |
| 186 | + "output_type": "stream", |
| 187 | + "text": [ |
| 188 | + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r3/3 [==============================] - 0s 116ms/step\n" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "name": "stdout", |
| 193 | + "output_type": "stream", |
| 194 | + "text": [ |
| 195 | + "Found 30 images belonging to 2 classes.\n" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "name": "stdout", |
| 200 | + "output_type": "stream", |
| 201 | + "text": [ |
| 202 | + "\r1/3 [=========>....................] - ETA: 0s" |
| 203 | + ] |
| 204 | + }, |
| 205 | + { |
| 206 | + "name": "stdout", |
| 207 | + "output_type": "stream", |
| 208 | + "text": [ |
| 209 | + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r2/3 [===================>..........] - ETA: 0s" |
| 210 | + ] |
| 211 | + }, |
| 212 | + { |
| 213 | + "name": "stdout", |
| 214 | + "output_type": "stream", |
| 215 | + "text": [ |
| 216 | + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r3/3 [==============================] - 0s 131ms/step\n" |
| 217 | + ] |
| 218 | + }, |
| 219 | + { |
| 220 | + "name": "stdout", |
| 221 | + "output_type": "stream", |
| 222 | + "text": [ |
| 223 | + "Found 30 images belonging to 2 classes.\n" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "name": "stdout", |
| 228 | + "output_type": "stream", |
| 229 | + "text": [ |
| 230 | + "[[14 1]\n [ 6 9]]\nacc: 0.7666666666666667\n" |
| 231 | + ] |
| 232 | + } |
| 233 | + ], |
| 234 | + "source": [ |
| 235 | + "#导入数据\n", |
| 236 | + "def load_data(shape):\n", |
| 237 | + " test_path = '测试数据/测试7'\n", |
| 238 | + " test_batches = ImageDataGenerator(rescale=1/255).flow_from_directory(test_path,\n", |
| 239 | + " target_size=shape,\n", |
| 240 | + " classes=[\"C2F\",\"X2F\"],\n", |
| 241 | + " class_mode=\"binary\",batch_size=10,shuffle=False)\n", |
| 242 | + " return test_batches\n", |
| 243 | + "\n", |
| 244 | + "# 预测\n", |
| 245 | + "def pred(model,steps,shape):\n", |
| 246 | + " steps = steps\n", |
| 247 | + " test_batches=load_data(shape)\n", |
| 248 | + " pred = model.predict_generator(test_batches, steps=steps, verbose=1)\n", |
| 249 | + " pred = pred.ravel()\n", |
| 250 | + " pred = list(pred)\n", |
| 251 | + " for i in range(len(pred)):\n", |
| 252 | + " if pred[i] < 0.5:\n", |
| 253 | + " pred[i] = 0\n", |
| 254 | + " else:\n", |
| 255 | + " pred[i] = 1\n", |
| 256 | + " return pred\n", |
| 257 | + "#投票选出最多的\n", |
| 258 | + "def vote(lt):\n", |
| 259 | + "\tindex1 = 0\n", |
| 260 | + "\tmax = 0\n", |
| 261 | + "\tfor i in range(len(lt)):\n", |
| 262 | + "\t\tflag = 0\n", |
| 263 | + "\t\tfor j in range(i+1,len(lt)):\n", |
| 264 | + "\t\t\tif lt[j] == lt[i]:\n", |
| 265 | + "\t\t\t\tflag += 1\n", |
| 266 | + "\t\tif flag > max:\n", |
| 267 | + "\t\t\tmax = flag\n", |
| 268 | + "\t\t\tindex1 = i\n", |
| 269 | + "\treturn index1\n", |
| 270 | + "def Ensemble(steps):\n", |
| 271 | + " ans = []\n", |
| 272 | + " pred1=list(pred(model1,steps,(224,224)))\n", |
| 273 | + " pred2=list(pred(model2,steps,(299,299)))\n", |
| 274 | + " pred3=list(pred(model3,steps,(224,224)))\n", |
| 275 | + " pred4=list(pred(model4,steps,(224,224)))\n", |
| 276 | + " pred5=list(pred(model5,steps,(224,224)))\n", |
| 277 | + " for i in range(len(pred5)):\n", |
| 278 | + " ls = []\n", |
| 279 | + " ls.append(pred1[i])\n", |
| 280 | + " ls.append(pred2[i])\n", |
| 281 | + " ls.append(pred3[i])\n", |
| 282 | + " ls.append(pred4[i])\n", |
| 283 | + " ls.append(pred5[i])\n", |
| 284 | + " ans.append(ls[vote(ls)])\n", |
| 285 | + " return ans\n", |
| 286 | + "\n", |
| 287 | + "steps=3\n", |
| 288 | + "#投票得出最终结果\n", |
| 289 | + "predicts=Ensemble(steps)\n", |
| 290 | + "# for i in enumerate(predicts):\n", |
| 291 | + "# print(i)\n", |
| 292 | + "\n", |
| 293 | + "\n", |
| 294 | + "\n", |
| 295 | + "test_batches = load_data((224,224))\n", |
| 296 | + "test_class = np.array([])\n", |
| 297 | + "\n", |
| 298 | + "files=[]\n", |
| 299 | + "for i in range(steps):\n", |
| 300 | + " test_imgs, test_lables = next(test_batches)\n", |
| 301 | + " test_class = np.hstack((test_class, test_lables))\n", |
| 302 | + " files.append(test_imgs)\n", |
| 303 | + "# print(\"真实类别:\", test_class)\n", |
| 304 | + "# print(\"预测类别:\", predicts)\n", |
| 305 | + "\n", |
| 306 | + "\n", |
| 307 | + "# 打印混淆矩阵\n", |
| 308 | + "cm = confusion_matrix(test_class, predicts)\n", |
| 309 | + "\n", |
| 310 | + "print(cm)\n", |
| 311 | + "\n", |
| 312 | + "tmp = 0\n", |
| 313 | + "for i in range(len(cm[0, :])):\n", |
| 314 | + " tmp += cm[i][i]\n", |
| 315 | + "accuracy = tmp / np.sum(cm)\n", |
| 316 | + "print(\"acc:\", accuracy)\n", |
| 317 | + "\n", |
| 318 | + "\n", |
| 319 | + "# i=0\n", |
| 320 | + "# for images in files:\n", |
| 321 | + "# for pred_label, image in zip(predicts, images):\n", |
| 322 | + "# i += 1\n", |
| 323 | + "# cv.imshow('{} - {} '.format(\n", |
| 324 | + "# i, pred_label), image)\n", |
| 325 | + "# cv.waitKey(0)\n", |
| 326 | + "# cv.destroyAllWindows()" |
| 327 | + ] |
| 328 | + }, |
| 329 | + { |
| 330 | + "cell_type": "code", |
| 331 | + "execution_count": null, |
| 332 | + "metadata": {}, |
| 333 | + "outputs": [], |
| 334 | + "source": [] |
| 335 | + } |
| 336 | + ], |
| 337 | + "metadata": { |
| 338 | + "kernelspec": { |
| 339 | + "display_name": "Python 2", |
| 340 | + "language": "python", |
| 341 | + "name": "python2" |
| 342 | + }, |
| 343 | + "language_info": { |
| 344 | + "codemirror_mode": { |
| 345 | + "name": "ipython", |
| 346 | + "version": 2 |
| 347 | + }, |
| 348 | + "file_extension": ".py", |
| 349 | + "mimetype": "text/x-python", |
| 350 | + "name": "python", |
| 351 | + "nbconvert_exporter": "python", |
| 352 | + "pygments_lexer": "ipython2", |
| 353 | + "version": "2.7.6" |
| 354 | + } |
| 355 | + }, |
| 356 | + "nbformat": 4, |
| 357 | + "nbformat_minor": 0 |
| 358 | +} |
0 commit comments