-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathtrain_sr.py
83 lines (65 loc) · 2.95 KB
/
train_sr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import argparse
from functools import partial
from pathlib import Path
from chainer import cuda
from chainer import optimizers
from chainer import training
from chainer.dataset import convert
from chainer.iterators import MultiprocessIterator
from chainer.training import extensions
from become_yukarin.config.sr_config import create_from_json
from become_yukarin.dataset import create_sr as create_sr_dataset
from become_yukarin.model.sr_model import create_sr as create_sr_model
from become_yukarin.updater.sr_updater import SRUpdater
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('config_json_path', type=Path)
parser.add_argument('output', type=Path)
arguments = parser.parse_args()
config = create_from_json(arguments.config_json_path)
arguments.output.mkdir(exist_ok=True)
config.save_as_json((arguments.output / 'config.json').absolute())
# model
if config.train.gpu >= 0:
cuda.get_device_from_id(config.train.gpu).use()
predictor, discriminator = create_sr_model(config.model)
models = {
'predictor': predictor,
'discriminator': discriminator,
}
# dataset
dataset = create_sr_dataset(config.dataset)
train_iter = MultiprocessIterator(dataset['train'], config.train.batchsize)
test_iter = MultiprocessIterator(dataset['test'], config.train.batchsize, repeat=False, shuffle=False)
train_eval_iter = MultiprocessIterator(dataset['train_eval'], config.train.batchsize, repeat=False, shuffle=False)
# optimizer
def create_optimizer(model):
optimizer = optimizers.Adam(alpha=0.0002, beta1=0.5, beta2=0.999)
optimizer.setup(model)
return optimizer
opts = {key: create_optimizer(model) for key, model in models.items()}
# updater
converter = partial(convert.concat_examples, padding=0)
updater = SRUpdater(
loss_config=config.loss,
predictor=predictor,
discriminator=discriminator,
device=config.train.gpu,
iterator=train_iter,
optimizer=opts,
converter=converter,
)
# trainer
trigger_log = (config.train.log_iteration, 'iteration')
trigger_snapshot = (config.train.snapshot_iteration, 'iteration')
trainer = training.Trainer(updater, out=arguments.output)
ext = extensions.Evaluator(test_iter, models, converter, device=config.train.gpu, eval_func=updater.forward)
trainer.extend(ext, name='test', trigger=trigger_log)
ext = extensions.Evaluator(train_eval_iter, models, converter, device=config.train.gpu, eval_func=updater.forward)
trainer.extend(ext, name='train', trigger=trigger_log)
trainer.extend(extensions.dump_graph('predictor/loss'))
ext = extensions.snapshot_object(predictor, filename='predictor_{.updater.iteration}.npz')
trainer.extend(ext, trigger=trigger_snapshot)
trainer.extend(extensions.LogReport(trigger=trigger_log))
trainer.extend(extensions.PrintReport(['predictor/loss']))
trainer.run()