We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
transformers_tasks/LLM/llm_classification.py
楼主给每一个类目提供了一个样本,实际业务场景中,一个样本肯定不够。理论上输入的样本越多,识别精度会约好。
大模型的token长度一般是有限的(输入的长度越长,耗时也会越长),ChatGLM-6B 推荐的 token 长度是 2048,如何更高效的利用业务场景已有的样本呢?
The text was updated successfully, but these errors were encountered:
Hi,我的想法是可以根据「分层」的方法来解决「类别多」的问题。 可以考虑先分到粗的类别,再细分到具体的类别。 举例来讲:如果要分类「乒乓球」这个类别,可以先分类到第一层:运动,再分到第二层:球类,再分类到乒乓球。
Sorry, something went wrong.
@HarderThenHarder 感谢回复。因为输入token长度限制,大类也可能分错,后续子类就没有啥意义了呀。这个可能还不是最好的方案
@HarderThenHarder 你好,utils.py里面只将数据处理成p-tuing格式,请问lora还能训练这种数据格式吗?因为lora微调分类的时候好像把label也包含进去了,标签泄漏了
No branches or pull requests
transformers_tasks/LLM/llm_classification.py
楼主给每一个类目提供了一个样本,实际业务场景中,一个样本肯定不够。理论上输入的样本越多,识别精度会约好。
大模型的token长度一般是有限的(输入的长度越长,耗时也会越长),ChatGLM-6B 推荐的 token 长度是 2048,如何更高效的利用业务场景已有的样本呢?
The text was updated successfully, but these errors were encountered: