-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools.py
74 lines (61 loc) · 2.11 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import pandas as pd
import os
def draw(dir):
os.chdir(dir)
data = pd.read_csv('data_sorted.csv')
print(data.shape)
# plt.figure()
data1 = data[data['label'] == 8]
# data1 = data1[data.values < 40]
data1 = data1.drop(['time', 'label', 'pressure'], axis=1)
print(data1.shape)
ax = data1.plot(kind='line', figsize=(30, 10))
fig = ax.get_figure()
fig.savefig("t_8all" + dir + ".png")
def draw1():
os.chdir('model')
data = pd.read_csv('lgb_63_feature_importance.csv')
print(data.shape)
ax = data.plot(kind='barh', figsize=(30, 10))
fig = ax.get_figure()
fig.savefig("t_1all.png")
def draw2():
data = pd.read_csv('feature_Data_data_filter/max.csv')
print(data.shape)
label = pd.read_csv('data/label.csv')
data_label = pd.concat((data, label), axis=1)
data_label.drop(['pressure', 'time'], axis=1, inplace=True)
data_label = data_label[data_label['label'] == 2]
print(data_label.head)
ax = data_label.plot(kind='line', figsize=(30, 10))
fig = ax.get_figure()
fig.savefig("max_2.png")
def draw3():
data = pd.read_csv('feature_Data_test/max.csv')
print(data.shape)
label = pd.read_csv('test/label.csv')
data_label = pd.concat((data, label), axis=1)
data_label.drop(['pressure', 'time'], axis=1, inplace=True)
data_label = data_label[data_label['label'] == 2]
print(data_label.head)
ax = data_label.plot(kind='line', figsize=(30, 10))
fig = ax.get_figure()
fig.savefig("max_2_test.png")
def draw4():
data = pd.read_csv('feature_Data_data_filter/mean.csv')
print(data.shape)
label = pd.read_csv('data/label.csv')
data_label = pd.concat((data, label), axis=1)
data_label = data_label[["pressure", "label"]]
data_label = data_label[data_label['label'] == 8]
data_label = data_label[['pressure']]
print(data_label.head)
ax = data_label.plot(kind='line', figsize=(30, 10))
fig = ax.get_figure()
fig.savefig("mean_8_train_pressure.png")
if __name__ == '__main__':
# draw('data')
#
# train = pd.read_csv('data/feature.csv')
# print(train.shape)
draw4()