-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathevaluate.py
169 lines (149 loc) · 6.6 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright (c) 2022 Heiheiyoyo. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from model import UIE
import argparse
from functools import partial
import torch
from transformers import BertTokenizerFast
from torch.utils.data import DataLoader
from utils import IEMapDataset, SpanEvaluator, IEDataset, convert_example, get_relation_type_dict, logger, tqdm, unify_prompt_name
@torch.no_grad()
def evaluate(model, metric, data_loader, device='gpu', loss_fn=None, show_bar=True):
"""
Given a dataset, it evals model and computes the metric.
Args:
model(obj:`torch.nn.Module`): A model to classify texts.
metric(obj:`Metric`): The evaluation metric.
data_loader(obj:`torch.utils.data.DataLoader`): The dataset loader which generates batches.
"""
return_loss = False
if loss_fn is not None:
return_loss = True
model.eval()
metric.reset()
loss_list = []
loss_sum = 0
loss_num = 0
if show_bar:
data_loader = tqdm(
data_loader, desc="Evaluating", unit='batch')
for batch in data_loader:
input_ids, token_type_ids, att_mask, start_ids, end_ids = batch
if device == 'gpu':
input_ids = input_ids.cuda()
token_type_ids = token_type_ids.cuda()
att_mask = att_mask.cuda()
outputs = model(input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=att_mask)
start_prob, end_prob = outputs[0], outputs[1]
if device == 'gpu':
start_prob, end_prob = start_prob.cpu(), end_prob.cpu()
start_ids = start_ids.type(torch.float32)
end_ids = end_ids.type(torch.float32)
if return_loss:
# Calculate loss
loss_start = loss_fn(start_prob, start_ids)
loss_end = loss_fn(end_prob, end_ids)
loss = (loss_start + loss_end) / 2.0
loss = float(loss)
loss_list.append(loss)
loss_sum += loss
loss_num += 1
if show_bar:
data_loader.set_postfix(
{
'dev loss': f'{loss_sum / loss_num:.5f}'
}
)
# Calcalate metric
num_correct, num_infer, num_label = metric.compute(start_prob, end_prob,
start_ids, end_ids)
metric.update(num_correct, num_infer, num_label)
precision, recall, f1 = metric.accumulate()
model.train()
if return_loss:
loss_avg = sum(loss_list) / len(loss_list)
return loss_avg, precision, recall, f1
else:
return precision, recall, f1
def do_eval():
tokenizer = BertTokenizerFast.from_pretrained(args.model_path)
model = UIE.from_pretrained(args.model_path)
if args.device == 'gpu':
model = model.cuda()
test_ds = IEDataset(args.test_path, tokenizer=tokenizer,
max_seq_len=args.max_seq_len)
test_data_loader = DataLoader(
test_ds, batch_size=args.batch_size, shuffle=False)
class_dict = {}
relation_data = []
if args.debug:
for data in test_ds.dataset:
class_name = unify_prompt_name(data['prompt'])
# Only positive examples are evaluated in debug mode
if len(data['result_list']) != 0:
if "的" not in data['prompt']:
class_dict.setdefault(class_name, []).append(data)
else:
relation_data.append((data['prompt'], data))
relation_type_dict = get_relation_type_dict(relation_data)
else:
class_dict["all_classes"] = test_ds
for key in class_dict.keys():
if args.debug:
test_ds = IEMapDataset(class_dict[key], tokenizer=tokenizer,
max_seq_len=args.max_seq_len)
else:
test_ds = class_dict[key]
test_data_loader = DataLoader(
test_ds, batch_size=args.batch_size, shuffle=False)
metric = SpanEvaluator()
precision, recall, f1 = evaluate(
model, metric, test_data_loader, args.device)
logger.info("-----------------------------")
logger.info("Class Name: %s" % key)
logger.info("Evaluation Precision: %.5f | Recall: %.5f | F1: %.5f" %
(precision, recall, f1))
if args.debug and len(relation_type_dict.keys()) != 0:
for key in relation_type_dict.keys():
test_ds = IEMapDataset(relation_type_dict[key], tokenizer=tokenizer,
max_seq_len=args.max_seq_len)
test_data_loader = DataLoader(
test_ds, batch_size=args.batch_size, shuffle=False)
metric = SpanEvaluator()
precision, recall, f1 = evaluate(
model, metric, test_data_loader, args.device)
logger.info("-----------------------------")
logger.info("Class Name: X的%s" % key)
logger.info("Evaluation Precision: %.5f | Recall: %.5f | F1: %.5f" %
(precision, recall, f1))
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model_path", type=str, required=True,
help="The path of saved model that you want to load.")
parser.add_argument("-t", "--test_path", type=str, required=True,
help="The path of test set.")
parser.add_argument("-b", "--batch_size", type=int, default=16,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--max_seq_len", type=int, default=512,
help="The maximum total input sequence length after tokenization.")
parser.add_argument("-D", '--device', choices=['cpu', 'gpu'], default="gpu",
help="Select which device to run model, defaults to gpu.")
parser.add_argument("--debug", action='store_true',
help="Precision, recall and F1 score are calculated for each class separately if this option is enabled.")
args = parser.parse_args()
# yapf: enable
do_eval()