-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_on_top.py
33 lines (25 loc) · 916 Bytes
/
model_on_top.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC, SVC
from sklearn.ensemble import RandomForestClassifier
if __name__ == '__main__':
root = './'
x_train, y_train = np.load(root + 'x_train.npy'), np.load(root + 'y_train.npy')
x_val, y_val = np.load(root + 'x_val.npy'), np.load(root + 'y_val.npy')
print(x_train.shape, y_train.shape, x_val.shape, y_val.shape)
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
score = knn.score(x_val, y_val)
print('KNN:', score)
SVM = SVC()
SVM.fit(x_train, y_train)
score = SVM.score(x_val, y_val)
print('SVM:', score)
L_SVM = LinearSVC()
L_SVM.fit(x_train, y_train)
score = L_SVM.score(x_val, y_val)
print('Linear SVM:', score)
RF = RandomForestClassifier()
RF.fit(x_train, y_train)
score = RF.score(x_val, y_val)
print('RF:', score)