-
Notifications
You must be signed in to change notification settings - Fork 2
/
classGeneration.cpp
1075 lines (928 loc) · 41.8 KB
/
classGeneration.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "classPNM.h"
// Forward declarations of functions included in this code module:
bool sortColumn0(const vector<double>& v1, const vector<double>& v2) { return v1[0] < v2[0]; }
bool sortColumn2(const vector<double>& v1, const vector<double>& v2) { return v1[2] < v2[2]; }
vector<int> poresPsize_(vector<vector<double>>& poreSizeDist, double coordination, double domain)
{
double pi = 3.1415926;
vector<int> result;
double volume_per_element;
double throatLengthFactor = 2.1; //ratio of throat length to pore diameter
for (int i = 0; i < poreSizeDist.size(); i++)
{
volume_per_element = 4 / 3 * pi*pow(poreSizeDist[i][0] / 2, 3) + throatLengthFactor * coordination / 2 * pi*pow(poreSizeDist[i][0] / 2, 2)*(poreSizeDist[i][0]);
result.push_back(round(poreSizeDist[i][1] * pow(domain, 3) / volume_per_element));
}
return result;
}
//function for determining generated pore diameter, given the current PSD entry, upper and lower bounds
double diameter_pore_gen(int current_psd_index, classPNM::classSettings& settings)
{
//PSD is provided from biggst to smallest pore size
double d_mean, d_max, d_min, diameter_pore;
d_mean = settings.poreSizeDist[current_psd_index][0];
int upper_limit = settings.poreSizeDist.size() - 1; //for bounds def
//define maximum bound
if ((current_psd_index > 0) && (current_psd_index < upper_limit))
{
d_max = settings.poreSizeDist[current_psd_index - 1][0];
d_min = settings.poreSizeDist[current_psd_index + 1][0];
}
else if (current_psd_index <= 0)
{
d_min = settings.poreSizeDist[current_psd_index + 1][0];
d_max = 2 * d_mean - d_min;
}
else if (current_psd_index >= upper_limit)
{
d_max = settings.poreSizeDist[current_psd_index - 1][0];
d_min = 2 * d_mean - d_max;
}
d_max = 0.5*(d_max + d_mean); //halfway point between PSD entries
d_min = 0.5*(d_min + d_mean);
double ratio = (d_mean - d_min) / (d_max - d_min); //if deviations to left and right are uneven, it is important to generate on "smaller" deviation side to make sure over large enough sample, average result is d_mean
double sample = ((double)rand() / RAND_MAX);//random saple in [0, 1] to define on which side of d_mean we are generating
//ratio is calculated from d_min, but selection of the side is done in inverse (froe example, if ratio = 0.1, that means 0.9 times out of 1 we need to generate on the d_min side to even out the result)
if (sample < ratio) //generating on d_max side
{
double x = ((double)rand() / RAND_MAX);
diameter_pore = d_mean + (d_max - d_mean) * x;
}
else if (sample > ratio) //generating on d_min side
{
double x = ((double)rand() / RAND_MAX);
diameter_pore = d_min + (d_mean - d_min) * x;
}
else { diameter_pore = d_mean; }
//diameter_pore = d_mean;
return diameter_pore;
}
///
///ClassGeneration functions
///
void classPNM::classMethods::classMethodsGeneration::poresGeneration2(classPNM::classNetwork& network, classPNM::classSettings& settings)
{
chrono::steady_clock::time_point begin = chrono::steady_clock::now();
settings.poreSizeDist.clear();
network.pores.clear();
network.diameter_pore.clear();
//converting string into double PSD
vector<double> temp;
for (int i = 0; i < settings.poreSizeDist_raw.size(); i++)
{
temp.clear();
for (int j = 0; j < settings.poreSizeDist_raw[i].size(); j++)
{
if (j == 0) { temp.push_back(stod(settings.poreSizeDist_raw[i][j])*1e-9); }
else { temp.push_back(stod(settings.poreSizeDist_raw[i][j])); }
}
settings.poreSizeDist.push_back(temp);
}
//calculate number of pores per each poe size with given domain
vector<int> nPores = poresPsize_(settings.poreSizeDist, settings.coordination, settings.domain);
//variable definition
int total_pn, current_psd_index, nCells, xCell, yCell, zCell, cellIndex, nCellsSmall, xCellSmall, yCellSmall, zCellSmall, cellIndexSmall;
double expected_porosity, cellSize, pores_per_cell, cellSizeSmall;
int nCellsMicro, xCellMicro, yCellMicro, zCellMicro, cellIndexMicro;
double cellSizeMicro;
total_pn = 0;
expected_porosity = 0;
//calculate total pore number
for (int i = 0; i < nPores.size(); i++)
{
if (!(nPores[i] < 1))
{
total_pn += nPores[i];
expected_porosity += settings.poreSizeDist[i][1];
}
}
settings.expectedP = expected_porosity;
cout << "Expected network porosity is: " << expected_porosity * 100.0 << " %\n";
//define which pore size we are starting generation from
current_psd_index = 0;
while (nPores[current_psd_index] < 1)
{
current_psd_index++;
}
//define how many pores we want to generate as a "large" grid:
double fraction = 0.0;
double cut_off = current_psd_index; //everything up to but NOT including THIS entry into PSD to be generated as "large" grid
double cut_off_micro = current_psd_index; ////everything up to but NOT including THIS entry into PSD to be generated as "small" grid
int large_pores = 0; //number of large pores to be generated
int small_pores = 0;
while (fraction < 0.001)
{
fraction += (double)nPores[cut_off] / total_pn;
large_pores += nPores[cut_off];
cut_off++;
};
//cout << "Cut-off: " << cut_off << endl;
//divide donain into "large" cells, just larger than biggest pore radius
cellSize = settings.poreSizeDist[current_psd_index][0] / 2;
nCells = (int)floor(settings.domain / cellSize);
cellSize = settings.domain / nCells;
//divide domain into "small" cells, based on the cut-off pore size
cellSizeSmall = settings.poreSizeDist[cut_off][0] / 2;
nCellsSmall = (int)floor(settings.domain / cellSizeSmall);
cellSizeSmall = settings.domain / nCellsSmall;
//variable for storing each "large" cell pore coords+diameter
vector<vector<vector<double>>> cellCoords(pow(nCells, 3));
//variable for storing each "small" cell pore coords+diameter
vector<vector<vector<double>>> cellCoordsSmall(pow(nCellsSmall, 3));
int n_generated = 0;
//give seed to the random generation algorithm
srand(settings.seed);
//generate the first pore
//variable for storing randomly generated pore coords plus its diameter before pushing into the Pores array
vector<double> temp_pore = { ((double)rand() / RAND_MAX) * settings.domain, ((double)rand() / RAND_MAX) * settings.domain, ((double)rand() / RAND_MAX) * settings.domain };
double temp_diameter = diameter_pore_gen(current_psd_index, settings); //generate pore size
temp_pore.push_back(temp_diameter); //assign value produced by the genertation function
network.pores.push_back(temp_pore);
network.diameter_pore.push_back(temp_diameter);
n_generated++;
if (n_generated >= nPores[current_psd_index])
{
current_psd_index++;
n_generated = 0;
}
//assign pore to a cell
xCell = (int)floor(temp_pore[0] / cellSize);
yCell = (int)floor(temp_pore[1] / cellSize);
zCell = (int)floor(temp_pore[2] / cellSize);
cellIndex = pow(nCells, 2)*xCell + nCells * yCell + zCell;
cellCoords[cellIndex].push_back(temp_pore);
cout << "Pore generation progress:\n";
cout << setprecision(2) << std::fixed;
//loop for generating the rest of the LARGE pores
int flag;
double progress;
for (int i = 1; i < large_pores; i++)
{
temp_diameter = diameter_pore_gen(current_psd_index, settings); //generate pore size
//V1: assign pores to cells
flag = 1; //flag is 1 (overlap)to enter the loop, but reset to zero(no overlap) straight after and raised in the overlap loop
while (flag > 0)
{
flag = 0; //flag reset
//take a random coordinate and calculate its location in the cell grid
temp_pore.clear();
double failsafe = 0.999999999;
temp_pore = { ((double)rand() / RAND_MAX) * settings.domain * failsafe, ((double)rand() / RAND_MAX) * settings.domain * failsafe, ((double)rand() / RAND_MAX) * settings.domain * failsafe };
temp_pore.push_back(temp_diameter);
xCell = (int)floor(temp_pore[0] / cellSize);
yCell = (int)floor(temp_pore[1] / cellSize);
zCell = (int)floor(temp_pore[2] / cellSize);
//cellIndex = pow(nCells, 2)*xCell + nCells * yCell + zCell;
//cellCoords[cellIndex].push_back(temp_pore);
//run search in 25 cells around the cell of interest
int cellIndexSearch;
double distance2;
for (int iCell = max(0, xCell - 2); iCell < min(nCells, xCell + 3); iCell++)
{
for (int jCell = max(0, yCell - 2); jCell < min(nCells, yCell + 3); jCell++)
{
for (int kCell = max(0, zCell - 2); kCell < min(nCells, zCell + 3); kCell++)
{
cellIndexSearch = pow(nCells, 2)*iCell + nCells * jCell + kCell;
for (int pore_in_cell = 0; pore_in_cell < cellCoords[cellIndexSearch].size(); pore_in_cell++)
{
distance2 = pow((temp_pore[0] - cellCoords[cellIndexSearch][pore_in_cell][0]), 2) + pow((temp_pore[1] - cellCoords[cellIndexSearch][pore_in_cell][1]), 2) + pow((temp_pore[2] - cellCoords[cellIndexSearch][pore_in_cell][2]), 2);
if (distance2 <= pow(cellCoords[cellIndexSearch][pore_in_cell][3] / 2 + temp_pore[3] / 2, 2))
{
flag = 1;
}
if (flag > 0) { break; }
}
if (flag > 0) { break; }
}
if (flag > 0) { break; }
}
if (flag > 0) { break; }
}
}
cellIndex = pow(nCells, 2)*xCell + nCells * yCell + zCell;
cellCoords[cellIndex].push_back(temp_pore);
network.pores.push_back(temp_pore);
//pore HAS TO BE this diameter, assign now
network.diameter_pore.push_back(temp_diameter);
n_generated++;
if (n_generated >= nPores[current_psd_index])
{
current_psd_index++;
n_generated = 0;
}
if (i % 10000 == 0)
{
progress = 100 * (i + 1) / (double)total_pn;
cout << "\r" << progress << "%" << flush;
}
}
//loop for generating SMALL pores
for (int i = large_pores; i < total_pn; i++)
{
temp_diameter = diameter_pore_gen(current_psd_index, settings); //generate pore size
//V1: assign pores to cells
flag = 1; //flag is 1 (overlap)to enter the loop, but reset to zero(no overlap) straight after and raised in the overlap loop
while (flag > 0)
{
flag = 0; //flag reset
//take a random coordinate and calculate its location in the cell grid
temp_pore.clear();
double failsafe = 0.999999999;
temp_pore = { ((double)rand() / RAND_MAX) * settings.domain * failsafe, ((double)rand() / RAND_MAX) * settings.domain * failsafe, ((double)rand() / RAND_MAX) * settings.domain * failsafe };
temp_pore.push_back(temp_diameter);
//TEST LARGE GRID FIRST
xCell = (int)floor(temp_pore[0] / cellSize);
yCell = (int)floor(temp_pore[1] / cellSize);
zCell = (int)floor(temp_pore[2] / cellSize);
//cellIndex = pow(nCells, 2)*xCell + nCells * yCell + zCell;
//cellCoords[cellIndex].push_back(temp_pore);
//run search in 25 cells around the cell of interest
int cellIndexSearch;
double distance2;
for (int iCell = max(0, xCell - 2); iCell < min(nCells, xCell + 3); iCell++)
{
for (int jCell = max(0, yCell - 2); jCell < min(nCells, yCell + 3); jCell++)
{
for (int kCell = max(0, zCell - 2); kCell < min(nCells, zCell + 3); kCell++)
{
cellIndexSearch = pow(nCells, 2)*iCell + nCells * jCell + kCell;
for (int pore_in_cell = 0; pore_in_cell < cellCoords[cellIndexSearch].size(); pore_in_cell++)
{
distance2 = pow((temp_pore[0] - cellCoords[cellIndexSearch][pore_in_cell][0]), 2) + pow((temp_pore[1] - cellCoords[cellIndexSearch][pore_in_cell][1]), 2) + pow((temp_pore[2] - cellCoords[cellIndexSearch][pore_in_cell][2]), 2);
if (distance2 <= pow(cellCoords[cellIndexSearch][pore_in_cell][3] / 2 + temp_pore[3] / 2, 2))
{
flag = 1;
}
if (flag > 0) { break; }
}
if (flag > 0) { break; }
}
if (flag > 0) { break; }
}
if (flag > 0) { break; }
}
//if fist check exits with flag > 0, it will exit instantly in the next loop, loss of efficiency is minimal
//TEST SMALL GRID
xCellSmall = (int)floor(temp_pore[0] / cellSizeSmall);
yCellSmall = (int)floor(temp_pore[1] / cellSizeSmall);
zCellSmall = (int)floor(temp_pore[2] / cellSizeSmall);
//cellIndex = pow(nCells, 2)*xCell + nCells * yCell + zCell;
//cellCoords[cellIndex].push_back(temp_pore);
//run search in 25 cells around the cell of interest
/*int cellIndexSearch;
double distance2;*/
for (int iCell = max(0, xCellSmall - 2); iCell < min(nCellsSmall, xCellSmall + 3); iCell++)
{
for (int jCell = max(0, yCellSmall - 2); jCell < min(nCellsSmall, yCellSmall + 3); jCell++)
{
for (int kCell = max(0, zCellSmall - 2); kCell < min(nCellsSmall, zCellSmall + 3); kCell++)
{
cellIndexSearch = pow(nCellsSmall, 2)*iCell + nCellsSmall * jCell + kCell;
for (int pore_in_cell = 0; pore_in_cell < cellCoordsSmall[cellIndexSearch].size(); pore_in_cell++)
{
distance2 = pow((temp_pore[0] - cellCoordsSmall[cellIndexSearch][pore_in_cell][0]), 2) + pow((temp_pore[1] - cellCoordsSmall[cellIndexSearch][pore_in_cell][1]), 2) + pow((temp_pore[2] - cellCoordsSmall[cellIndexSearch][pore_in_cell][2]), 2);
if (distance2 <= pow(cellCoordsSmall[cellIndexSearch][pore_in_cell][3] / 2 + temp_pore[3] / 2, 2))
{
flag = 1;
}
if (flag > 0) { break; }
}
if (flag > 0) { break; }
}
if (flag > 0) { break; }
}
if (flag > 0) { break; }
}
}
//push back generated pore into the small grid storage
cellIndexSmall = pow(nCellsSmall, 2)*xCellSmall + nCellsSmall * yCellSmall + zCellSmall;
cellCoordsSmall[cellIndexSmall].push_back(temp_pore);
network.pores.push_back(temp_pore);
//pore HAS TO BE this diameter, assign now
network.diameter_pore.push_back(temp_diameter);
n_generated++;
if (n_generated >= nPores[current_psd_index])
{
current_psd_index++;
n_generated = 0;
}
if (i % 10000 == 0)
{
progress = 100 * (i + 1) / (double)total_pn;
cout << "\r" << progress << "%" << flush;
}
}
progress = 100;
cout << "\r" << progress << "%" << flush;
cout << "\nNumber of pores generated: " << network.pores.size() << endl;
chrono::steady_clock::time_point end = chrono::steady_clock::now();
string elapsedTime = "Elapsed time: " + to_string(chrono::duration_cast<std::chrono::seconds>(end - begin).count()) + " [s]";
cout << elapsedTime << endl;
}
void classPNM::classMethods::classMethodsGeneration::throatsGeneration(classPNM::classNetwork& network, classPNM::classSettings& settings)
{
chrono::steady_clock::time_point begin = chrono::steady_clock::now();
//vector of throat connectivities {start pore index; end pore index; throat diameter}
network.throats.clear();
network.diameter_throat.clear();
double running_z = 0;
int n_nearest = 10; //randomly connect to Z/2 out of nearest N pores, to provide some variability
srand(settings.seed);
//converting string into double PSD
vector<double> temp;
settings.poreSizeDist.clear();
for (int i = 0; i < settings.poreSizeDist_raw.size(); i++)
{
temp.clear();
for (int j = 0; j < settings.poreSizeDist_raw[i].size(); j++)
{
if (j == 0) { temp.push_back(stod(settings.poreSizeDist_raw[i][j])*1e-9); }
else { temp.push_back(stod(settings.poreSizeDist_raw[i][j])); }
}
settings.poreSizeDist.push_back(temp);
}
//calculate number of pores per each poe size with given domain
vector<int> nPores = poresPsize_(settings.poreSizeDist, settings.coordination, settings.domain);
//variable definition
int total_pn, current_psd_index;
double expected_porosity;
total_pn = 0;
//calculate total pore number
for (int i = 0; i < nPores.size(); i++)
{
if (!(nPores[i] < 1))
{
total_pn += nPores[i];
}
}
//define which pore size we are starting generation from
current_psd_index = 0;
while (nPores[current_psd_index] < 1)
{
current_psd_index++;
}
//define how many pores we want to generate as a "large" grid:
double fraction = 0.0;
int cut_off = current_psd_index; //everything up to but NOT including THIS entry into PSD to be generated as "large" grid
int large_pores = 0; //number of large pores to be generated
while (fraction < 0.001)
{
fraction += (double)nPores[cut_off] / total_pn;
large_pores += nPores[cut_off];
cut_off++;
};
cout << "Cut-off: " << cut_off << endl;
//assign large pores into cells:
//divide donain into cells, just larger than biggest pore radius
double cellSize = network.pores[0][3] / 2;
int nCells = (int)floor(settings.domain / cellSize);
cellSize = settings.domain / nCells;
vector<vector<int>> cellCoords(pow(nCells, 3));
int xCell, yCell, zCell, cellIndex;
for (int i = 0; i < large_pores; i++)
{
xCell = (int)floor(network.pores[i][0] / cellSize);
yCell = (int)floor(network.pores[i][1] / cellSize);
zCell = (int)floor(network.pores[i][2] / cellSize);
cellIndex = pow(nCells, 2)*xCell + nCells * yCell + zCell;
cellCoords[cellIndex].push_back(i);
}
int assignment_check = 0; //check if all pors have been assigned to cells correctly
for (int i = 0; i < cellCoords.size(); i++)
{
assignment_check += cellCoords[i].size();
}
//assign SMALL pores into cells:
//divide donain into cells:
//divide domain into "small" cells, based on the cut-off pore size
double cellSizeSmall = settings.poreSizeDist[cut_off][0] / 2;
int nCellsSmall = (int)floor(settings.domain / cellSizeSmall);
cellSizeSmall = settings.domain / nCellsSmall;
vector<vector<int>> cellCoordsSmall(pow(nCellsSmall, 3));
int xCellSmall, yCellSmall, zCellSmall, cellIndexSmall;
for (int i = large_pores; i < total_pn; i++)
{
xCellSmall = (int)floor(network.pores[i][0] / cellSizeSmall);
yCellSmall = (int)floor(network.pores[i][1] / cellSizeSmall);
zCellSmall = (int)floor(network.pores[i][2] / cellSizeSmall);
cellIndexSmall = pow(nCellsSmall, 2)*xCellSmall + nCellsSmall * yCellSmall + zCellSmall;
cellCoordsSmall[cellIndexSmall].push_back(i);
}
for (int i = 0; i < cellCoordsSmall.size(); i++)
{
assignment_check += cellCoordsSmall[i].size();
}
cout << assignment_check << endl;
//vector for storing existing connections for checking at generation
vector<vector<int>> existing_conns(total_pn);
//vector<int> temp_throats; //temporary storage of connectivity to be pushed back at the end of the loop
vector <vector<double>> distance_array; //array for storing sorted distance array for closest pores, {distance; pore index}
cout << "Throat generation progress:\n";
cout << setprecision(2) << std::fixed;
double progress;
//main loop for creacting Z/2 throats for each pore
for (int i = 0; i < total_pn; i++)
{
distance_array.clear();
int large_grid_search_radius = 2;
int small_grid_search_radius = 4;
//search for closest pores within nearest 5 cells of the LARGE grid
xCell = (int)floor(network.pores[i][0] / cellSize);
yCell = (int)floor(network.pores[i][1] / cellSize);
zCell = (int)floor(network.pores[i][2] / cellSize);
cellIndex = pow(nCells, 2)*xCell + nCells * yCell + zCell;
int cellIndexSearch;
double distance2;
for (int iCell = max(0, xCell - large_grid_search_radius); iCell < min(nCells, xCell + large_grid_search_radius + 1); iCell++)
{
for (int jCell = max(0, yCell - large_grid_search_radius); jCell < min(nCells, yCell + large_grid_search_radius + 1); jCell++)
{
for (int kCell = max(0, zCell - large_grid_search_radius); kCell < min(nCells, zCell + large_grid_search_radius + 1); kCell++)
{
cellIndexSearch = pow(nCells, 2)*iCell + nCells * jCell + kCell;
for (int pore_in_cell = 0; pore_in_cell < cellCoords[cellIndexSearch].size(); pore_in_cell++)
{
//construct the distance array for the pores within the searched cells
distance_array.push_back({ (pow((network.pores[i][0] - network.pores[cellCoords[cellIndexSearch][pore_in_cell]][0]), 2) + pow((network.pores[i][1] - network.pores[cellCoords[cellIndexSearch][pore_in_cell]][1]), 2) + pow((network.pores[i][2] - network.pores[cellCoords[cellIndexSearch][pore_in_cell]][2]), 2)), (double)cellCoords[cellIndexSearch][pore_in_cell] });
}
}
}
}
//search for closest pores within nearest x cells of the SMALL grid
xCellSmall = (int)floor(network.pores[i][0] / cellSizeSmall);
yCellSmall = (int)floor(network.pores[i][1] / cellSizeSmall);
zCellSmall = (int)floor(network.pores[i][2] / cellSizeSmall);
cellIndexSmall = pow(nCellsSmall, 2)*xCellSmall + nCellsSmall * yCellSmall + zCellSmall;
//int cellIndexSearchSmall;
//double distance2;
for (int iCell = max(0, xCellSmall - small_grid_search_radius); iCell < min(nCellsSmall, xCellSmall + small_grid_search_radius + 1); iCell++)
{
for (int jCell = max(0, yCellSmall - small_grid_search_radius); jCell < min(nCellsSmall, yCellSmall + small_grid_search_radius + 1); jCell++)
{
for (int kCell = max(0, zCellSmall - small_grid_search_radius); kCell < min(nCellsSmall, zCellSmall + small_grid_search_radius + 1); kCell++)
{
cellIndexSearch = pow(nCellsSmall, 2)*iCell + nCellsSmall * jCell + kCell;
for (int pore_in_cell = 0; pore_in_cell < cellCoordsSmall[cellIndexSearch].size(); pore_in_cell++)
{
//construct the distance array for the pores within the searched cells
distance_array.push_back({ (pow((network.pores[i][0] - network.pores[cellCoordsSmall[cellIndexSearch][pore_in_cell]][0]), 2) + pow((network.pores[i][1] - network.pores[cellCoordsSmall[cellIndexSearch][pore_in_cell]][1]), 2) + pow((network.pores[i][2] - network.pores[cellCoordsSmall[cellIndexSearch][pore_in_cell]][2]), 2)), (double)cellCoordsSmall[cellIndexSearch][pore_in_cell] });
}
}
}
}
//sorting the distance array
if (distance_array.size() < n_nearest)
{
cout << "Not enough neighbours for pore " << i << ", cannot proceed generation!" << endl;
exit(1);
}
sort(distance_array.begin(), distance_array.end(), sortColumn0);
int connection, flag; //which closest pore do we try to connect to?
if (running_z < settings.coordination)
{
for (int j = 0; j < ceil(settings.coordination / 2); j++)
{
//check for existing connection on the pore of interest
flag = 0;
connection = rand() % n_nearest + 1; //desired pore to connect to from the list of closest pores
while (flag >= 0)
{
if (existing_conns[i].empty()) { flag = -1; } //if there are no existing connections on pore i, skip
else
{
for (int k = 0; k < existing_conns[i].size(); k++)
{
if (existing_conns[i][k] == distance_array[connection][1])
{
connection = rand() % n_nearest + 1;
flag = 0;
break;
}
flag = -1;
}
}
}
//update the connection array adn the diameter array
if (i < distance_array[connection][1])
{
network.throats.push_back({ (double)i, distance_array[connection][1], network.pores[i][3] });
}
else
{
network.throats.push_back({ distance_array[connection][1], (double)i, network.pores[i][3] });
}
network.diameter_throat.push_back(network.pores[i][3]);
//update the existing connection array with the new connection
existing_conns[i].push_back((int)distance_array[connection][1]);
existing_conns[(int)distance_array[connection][1]].push_back(i);
}
}
else
{
for (int j = 0; j < floor(settings.coordination / 2); j++)
{
//check for existing connection on the pore of interest
flag = 0;
connection = rand() % n_nearest + 1; //desired pore to connect to from the list of closest pores
while (flag >= 0)
{
if (existing_conns[i].empty()) { flag = -1; } //if there are no existing connections on pore i, skip
else
{
for (int k = 0; k < existing_conns[i].size(); k++)
{
if (existing_conns[i][k] == distance_array[connection][1])
{
connection = rand() % n_nearest + 1;
flag = 0;
break;
}
flag = -1;
}
}
}
//update the connection array adn the diameter array
if (i < distance_array[connection][1])
{
network.throats.push_back({ (double)i, distance_array[connection][1], network.pores[i][3] });
}
else
{
network.throats.push_back({ distance_array[connection][1], (double)i, network.pores[i][3] });
}
network.diameter_throat.push_back(network.pores[i][3]);
//update the existing connection array with the new connection
existing_conns[i].push_back((int)distance_array[connection][1]);
existing_conns[(int)distance_array[connection][1]].push_back(i);
}
}
running_z = 2 * (double)network.throats.size() / (double)(i + 1);
if (i % 1000 == 0)
{
progress = 100 * (i + 1) / (double)total_pn;
cout << "\r" << progress << "%" << flush;
}
}
progress = 100;
cout << "\r" << progress << "%" << flush;
cout << "\nNumber of throats generated: " << network.throats.size() << "\n";
chrono::steady_clock::time_point end = chrono::steady_clock::now();
string elapsedTime = "Elapsed time: " + to_string(chrono::duration_cast<std::chrono::seconds>(end - begin).count()) + " [s]";
cout << elapsedTime << endl;
}
void classPNM::classMethods::classMethodsGeneration::throatsGeneration2(classPNM::classNetwork& network, classPNM::classSettings& settings)
{
chrono::steady_clock::time_point begin = chrono::steady_clock::now();
//vector of throat connectivities {start pore index; end pore index; throat diameter}
network.throats.clear();
network.diameter_throat.clear();
double running_z = 0;
int n_nearest = 10; //randomly connect to Z/2 out of nearest N pores, to provide some variability
srand(settings.seed);
//converting string into double PSD
vector<double> temp;
settings.poreSizeDist.clear();
for (int i = 0; i < settings.poreSizeDist_raw.size(); i++)
{
temp.clear();
for (int j = 0; j < settings.poreSizeDist_raw[i].size(); j++)
{
if (j == 0) { temp.push_back(stod(settings.poreSizeDist_raw[i][j])*1e-9); }
else { temp.push_back(stod(settings.poreSizeDist_raw[i][j])); }
}
settings.poreSizeDist.push_back(temp);
}
//calculate number of pores per each poe size with given domain
vector<int> nPores = poresPsize_(settings.poreSizeDist, settings.coordination, settings.domain);
//variable definition
int total_pn, current_psd_index;
double expected_porosity;
total_pn = 0;
//calculate total pore number
for (int i = 0; i < nPores.size(); i++)
{
if (!(nPores[i] < 1))
{
total_pn += nPores[i];
}
}
//define which pore size we are starting generation from
current_psd_index = 0;
while (nPores[current_psd_index] < 1)
{
current_psd_index++;
}
//define how many pores we want to generate as a "large" grid:
double fraction = 0.0;
int cut_off = current_psd_index; //everything up to but NOT including THIS entry into PSD to be generated as "large" grid
int large_pores = 0; //number of large pores to be generated
while (fraction < 0.001)
{
fraction += (double)nPores[cut_off] / total_pn;
large_pores += nPores[cut_off];
cut_off++;
};
//cout << "Cut-off: " << cut_off << endl;
//assign large pores into cells:
//divide donain into cells, just larger than biggest pore radius
double cellSize = network.pores[0][3] / 2;
int nCells = (int)floor(settings.domain / cellSize);
cellSize = settings.domain / nCells;
vector<vector<int>> cellCoords(pow(nCells, 3));
int xCell, yCell, zCell, cellIndex;
for (int i = 0; i < large_pores; i++)
{
xCell = (int)floor(network.pores[i][0] / cellSize);
yCell = (int)floor(network.pores[i][1] / cellSize);
zCell = (int)floor(network.pores[i][2] / cellSize);
cellIndex = pow(nCells, 2)*xCell + nCells * yCell + zCell;
cellCoords[cellIndex].push_back(i);
}
int assignment_check = 0; //check if all pors have been assigned to cells correctly
for (int i = 0; i < cellCoords.size(); i++)
{
assignment_check += cellCoords[i].size();
}
//assign SMALL pores into cells:
//divide donain into cells:
//divide domain into "small" cells, based on the cut-off pore size
double cellSizeSmall = settings.poreSizeDist[cut_off][0] / 2;
int nCellsSmall = (int)floor(settings.domain / cellSizeSmall);
cellSizeSmall = settings.domain / nCellsSmall;
vector<vector<int>> cellCoordsSmall(pow(nCellsSmall, 3));
int xCellSmall, yCellSmall, zCellSmall, cellIndexSmall;
for (int i = large_pores; i < total_pn; i++)
{
xCellSmall = (int)floor(network.pores[i][0] / cellSizeSmall);
yCellSmall = (int)floor(network.pores[i][1] / cellSizeSmall);
zCellSmall = (int)floor(network.pores[i][2] / cellSizeSmall);
cellIndexSmall = pow(nCellsSmall, 2)*xCellSmall + nCellsSmall * yCellSmall + zCellSmall;
cellCoordsSmall[cellIndexSmall].push_back(i);
}
for (int i = 0; i < cellCoordsSmall.size(); i++)
{
assignment_check += cellCoordsSmall[i].size();
}
//cout << assignment_check << endl;
//vector for storing existing connections for checking at generation
vector<vector<int>> existing_conns(total_pn);
//vector<int> temp_throats; //temporary storage of connectivity to be pushed back at the end of the loop
vector <vector<double>> distance_array; //array for storing sorted distance array for closest pores, {distance; pore index}
vector <vector<double>> distance_array_temp; //array for storing sorted distance array for closest pores, {distance; pore index}
cout << "Throat generation progress:\n";
cout << setprecision(2) << std::fixed;
double progress;
int existing_connections = 0;
//variables for distance and direction calc
double distance2;
double cosine2;
//variables declared outside of the loop
int large_grid_search_radius = 2;
int small_grid_search_radius = 4;
int cellIndexSearch;
double failsafe = 0.999999999;
double anisotropy_pow = 1 / settings.anisotropy;
//main loop for creacting Z/2 throats for each pore
for (int i = 0; i < total_pn; i++)
{
distance_array.clear();
n_nearest = 10;
//search for closest pores within nearest 5 cells of the LARGE grid
xCell = (int)floor(network.pores[i][0] / cellSize);
yCell = (int)floor(network.pores[i][1] / cellSize);
zCell = (int)floor(network.pores[i][2] / cellSize);
cellIndex = pow(nCells, 2)*xCell + nCells * yCell + zCell;
for (int iCell = max(0, xCell - large_grid_search_radius); iCell < min(nCells, xCell + large_grid_search_radius + 1); iCell++)
{
for (int jCell = max(0, yCell - large_grid_search_radius); jCell < min(nCells, yCell + large_grid_search_radius + 1); jCell++)
{
for (int kCell = max(0, zCell - large_grid_search_radius); kCell < min(nCells, zCell + large_grid_search_radius + 1); kCell++)
{
cellIndexSearch = pow(nCells, 2)*iCell + nCells * jCell + kCell;
for (int pore_in_cell = 0; pore_in_cell < cellCoords[cellIndexSearch].size(); pore_in_cell++)
{
//construct the distance array for the pores within the searched cells
//calculate distance and diraction with retation to XY plane
distance2 = (pow((network.pores[i][0] - network.pores[cellCoords[cellIndexSearch][pore_in_cell]][0]), 2) + pow((network.pores[i][1] - network.pores[cellCoords[cellIndexSearch][pore_in_cell]][1]), 2) + pow((network.pores[i][2] - network.pores[cellCoords[cellIndexSearch][pore_in_cell]][2]), 2));
cosine2 = pow((network.pores[i][2] - network.pores[cellCoords[cellIndexSearch][pore_in_cell]][2]), 2) / (pow((network.pores[i][0] - network.pores[cellCoords[cellIndexSearch][pore_in_cell]][0]), 2) + pow((network.pores[i][1] - network.pores[cellCoords[cellIndexSearch][pore_in_cell]][1]), 2));
distance_array.push_back({ distance2, (double)cellCoords[cellIndexSearch][pore_in_cell], cosine2 });
}
}
}
}
//search for closest pores within nearest x cells of the SMALL grid
xCellSmall = (int)floor(network.pores[i][0] / cellSizeSmall);
yCellSmall = (int)floor(network.pores[i][1] / cellSizeSmall);
zCellSmall = (int)floor(network.pores[i][2] / cellSizeSmall);
cellIndexSmall = pow(nCellsSmall, 2)*xCellSmall + nCellsSmall * yCellSmall + zCellSmall;
//int cellIndexSearchSmall;
for (int iCell = max(0, xCellSmall - small_grid_search_radius); iCell < min(nCellsSmall, xCellSmall + small_grid_search_radius + 1); iCell++)
{
for (int jCell = max(0, yCellSmall - small_grid_search_radius); jCell < min(nCellsSmall, yCellSmall + small_grid_search_radius + 1); jCell++)
{
for (int kCell = max(0, zCellSmall - small_grid_search_radius); kCell < min(nCellsSmall, zCellSmall + small_grid_search_radius + 1); kCell++)
{
cellIndexSearch = pow(nCellsSmall, 2)*iCell + nCellsSmall * jCell + kCell;
for (int pore_in_cell = 0; pore_in_cell < cellCoordsSmall[cellIndexSearch].size(); pore_in_cell++)
{
//construct the distance array for the pores within the searched cells
distance2 = (pow((network.pores[i][0] - network.pores[cellCoordsSmall[cellIndexSearch][pore_in_cell]][0]), 2) + pow((network.pores[i][1] - network.pores[cellCoordsSmall[cellIndexSearch][pore_in_cell]][1]), 2) + pow((network.pores[i][2] - network.pores[cellCoordsSmall[cellIndexSearch][pore_in_cell]][2]), 2));
cosine2 = pow((network.pores[i][2] - network.pores[cellCoordsSmall[cellIndexSearch][pore_in_cell]][2]), 2) / (pow((network.pores[i][0] - network.pores[cellCoordsSmall[cellIndexSearch][pore_in_cell]][0]), 2) + pow((network.pores[i][1] - network.pores[cellCoordsSmall[cellIndexSearch][pore_in_cell]][1]), 2));
distance_array.push_back({ distance2 , (double)cellCoordsSmall[cellIndexSearch][pore_in_cell], cosine2 });
}
}
}
}
//sorting the distance array
if (distance_array.size() <= n_nearest)
{
//cout << "Not enough neighbours for pore " << i << ", cannot proceed generation!" << endl;
//exit(1);
n_nearest = distance_array.size() - 1;
}
//sort by distance
sort(distance_array.begin(), distance_array.end(), sortColumn0);
//cut to n_nearest + 1 length (to account for the fact that this pore found itself as a closest neigbour)
distance_array.resize(n_nearest + 1);
//sort by direction
sort(distance_array.begin(), distance_array.end(), sortColumn2);
int connection, flag; //which closest pore do we try to connect to?
if (running_z < settings.coordination)
{
for (int j = 0; j < ceil(settings.coordination / 2); j++)
{
//check for existing connection on the pore of interest
flag = 0;
//connection = rand() % n_nearest + 1; //desired pore to connect to from the list of closest pores, not including itself
connection = (int)(pow((double)rand() / RAND_MAX, anisotropy_pow) * failsafe * n_nearest) + 1; //produce value [0, 1), change to desired range, truncate to int and shift 1 up to avoid connection with itself
while (flag >= 0)
{
if (existing_conns[i].empty()) { flag = -1; } //if there are no existing connections on pore i, skip
else
{
for (int k = 0; k < existing_conns[i].size(); k++)
{
if (existing_conns[i][k] == distance_array[connection][1])
{
connection = (int)(pow((double)rand() / RAND_MAX, anisotropy_pow) * failsafe * n_nearest) + 1; //produce value [0, 1), change to desired range, truncate to int and shift 1 up to avoid connection with itself
flag = 0;
existing_connections++;
break;
}
flag = -1;
}
}
}
//update the connection array adn the diameter array
if (i < distance_array[connection][1])
{
network.throats.push_back({ (double)i, distance_array[connection][1], network.pores[i][3] });
}
else
{
network.throats.push_back({ distance_array[connection][1], (double)i, network.pores[i][3] });
}
network.diameter_throat.push_back(network.pores[i][3]);
//update the existing connection array with the new connection
existing_conns[i].push_back((int)distance_array[connection][1]);
existing_conns[(int)distance_array[connection][1]].push_back(i);
}
}
else
{
for (int j = 0; j < floor(settings.coordination / 2); j++)
{
//check for existing connection on the pore of interest
flag = 0;
connection = (int)(pow((double)rand() / RAND_MAX, anisotropy_pow) * failsafe * n_nearest) + 1; //produce value [0, 1), change to desired range, truncate to int and shift 1 up to avoid connection with itself
while (flag >= 0)
{
if (existing_conns[i].empty()) { flag = -1; } //if there are no existing connections on pore i, skip
else
{
for (int k = 0; k < existing_conns[i].size(); k++)
{
if (existing_conns[i][k] == distance_array[connection][1])
{
connection = (int)(pow((double)rand() / RAND_MAX, anisotropy_pow) * failsafe * n_nearest) + 1; //produce value [0, 1), change to desired range, truncate to int and shift 1 up to avoid connection with itself
flag = 0;
existing_connections++;
break;
}
flag = -1;
}
}
}
//update the connection array adn the diameter array
if (i < distance_array[connection][1])
{
network.throats.push_back({ (double)i, distance_array[connection][1], network.pores[i][3] });
}
else
{
network.throats.push_back({ distance_array[connection][1], (double)i, network.pores[i][3] });
}
network.diameter_throat.push_back(network.pores[i][3]);
//update the existing connection array with the new connection
existing_conns[i].push_back((int)distance_array[connection][1]);
existing_conns[(int)distance_array[connection][1]].push_back(i);
}
}
running_z = 2 * (double)network.throats.size() / (double)(i + 1);
if (i % 1000 == 0)
{
progress = 100 * (i + 1) / (double)total_pn;
cout << "\r" << progress << "%" << flush;
}
}
progress = 100;
cout << "\r" << progress << "%" << flush;
cout << "\nNumber of throats generated: " << network.throats.size() << "\n";
//cout << "Existing connections encountered: " << existing_connections << endl;
chrono::steady_clock::time_point end = chrono::steady_clock::now();
string elapsedTime = "Elapsed time: " + to_string(chrono::duration_cast<std::chrono::seconds>(end - begin).count()) + " [s]";
cout << elapsedTime << endl;
}
void classPNM::classMethods::classMethodsGeneration::connectedComponents(classPNM::classNetwork& network)
{
using namespace boost;
int Nt = network.throats.size();
int Np = network.pores.size();
typedef adjacency_list <vecS, vecS, undirectedS> Graph;
//using example code from boost library for definiton of graph clusters
Graph G;
for (int i = 0; i < Nt; i++)
{
add_edge(network.throats[i][0], network.throats[i][1], G);
}
cout << "Searching for disconnected clusters..." << endl;
chrono::steady_clock::time_point begin = chrono::steady_clock::now();
std::vector<int> component(num_vertices(G));
int num = connected_components(G, &component[0]);
chrono::steady_clock::time_point end = chrono::steady_clock::now();
string elapsedTime = "Elapsed time: " + to_string(chrono::duration_cast<std::chrono::seconds>(end - begin).count()) + " [s]";
//cout << elapsedTime << endl;