-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcamera-mouse-v1.0.py
150 lines (133 loc) · 6.5 KB
/
camera-mouse-v1.0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from tkinter import * # GUI
from tkinter import messagebox # Warning Message
import cv2 # Computer Vision
import mediapipe as mp
import time # can be replaced by datetime
import mouse # move function of the mouse
from datetime import datetime
import pyautogui # click function and keyboard simulation
def mouse_move(x, y):
mouse.move(x, y, absolute=False, duration=0)
def trigger_gesture(action):
x, y = mouse.get_position()
print("Gesture triggered: "+action)
if action == "Left Click":
pyautogui.click(x, y)
elif action == "Double Click":
pyautogui.doubleClick(x, y)
elif action == "Right Click":
pyautogui.rightClick(x, y)
else:
pyautogui.press("esc")
def save_callback():
values = [v.get() for v in variables]
if len(set(values)) != 4:
messagebox.showwarning("Warning", "All values must be unique")
else:
came(values)
master.destroy()
# Camera Mouse
def came(values):
cap = cv2.VideoCapture(0)
pTime = 0 # time when previous frame processed
mp_draw = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(max_num_faces=1) # recognizes only one face at a time
draw_spec = mp_draw.DrawingSpec(thickness=1, circle_radius=2)
mouse_speed = 5
time_last = datetime.now()
gesture_delay = 2
eyebrows_raised_time = None # if None, it means eyebrows are not raised | if time, eyebrows are raised
# face detection is running while "Escape" button is being pressed
while True:
success, img = cap.read()
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = face_mesh.process(img_rgb)
if results.multi_face_landmarks:
for faceLms in results.multi_face_landmarks:
mp_draw.draw_landmarks(img, faceLms, mp_face_mesh.FACEMESH_CONTOURS, draw_spec, draw_spec)
# save the values of the differences from the coordinates
diff_mouth_width_y = float(faceLms.landmark[16].y) - float(faceLms.landmark[13].y)
diff_mouth_length_x = float(faceLms.landmark[308].x) - float(faceLms.landmark[61].x)
diff_eyebrows_y = float(faceLms.landmark[385].y) - float(faceLms.landmark[296].y)
diff_nose_up_y = float(faceLms.landmark[152].y) - float(faceLms.landmark[1].y)
diff_nose_down_y = float(faceLms.landmark[175].y) - float(faceLms.landmark[19].y)
diff_nose_left_x = float(faceLms.landmark[1].x) - float(faceLms.landmark[123].x)
diff_nose_right_x = float(faceLms.landmark[352].x) - float(faceLms.landmark[1].x)
face_length_y = float(faceLms.landmark[152].y) - float(faceLms.landmark[10].y)
face_width_x = float(faceLms.landmark[352].x) - float(faceLms.landmark[123].x)
# Normalization: Divide horizontal mouth width by face_width_x to normalize the value (make it invariant to head size)
print("diff_mout_length_x: "+str(diff_mouth_length_x / face_width_x)+", default mouth x: "+str(0.1 / face_width_x))
if (diff_mouth_length_x / face_width_x ) > 0.42:
# and (datetime.now() - time_last).total_seconds() > gesture_delay:
print("Smile triggered")
time_last = datetime.now()
trigger_gesture(values[0])
if diff_mouth_width_y > (face_width_x * 0.121227) and (datetime.now() - time_last).total_seconds() > gesture_delay:
time_last = datetime.now()
trigger_gesture(values[1])
if diff_eyebrows_y > (face_width_x * 0.287071):
# if eyebrows are being raised for the first time
if eyebrows_raised_time is None:
# time when first raised
#
eyebrows_raised_time = datetime.now()
# eyebrows up for more than 2 sec gesture
if (datetime.now() - eyebrows_raised_time).total_seconds() > 2 and (datetime.now() - time_last).total_seconds() > gesture_delay:
time_last = datetime.now()
trigger_gesture(values[2]) # this gesture is not always triggered
else:
# eyebrows up for less than 2 sec gesture
if eyebrows_raised_time is not None and (datetime.now() - eyebrows_raised_time).total_seconds() < 2:
time_last = datetime.now()
trigger_gesture(values[3])
eyebrows_raised_time = None
if diff_nose_right_x > (face_width_x * 0.626632):
time_last = datetime.now()
mouse_move(mouse_speed, 0)
# if diff_nose_left_x > 0,194273:
if diff_nose_left_x > (face_width_x * 0.586632):
time_last = datetime.now()
mouse_move(-1 * mouse_speed, 0)
# if diff_nose_up_y > 0,28375: 0,397314
if diff_nose_up_y > (face_width_x * 0.746032):
time_last = datetime.now()
mouse_move(0, -1 * mouse_speed)
# if diff_nose_down_y < 0,210376: 0,429268
if diff_nose_down_y < (face_width_x * 0.806032):
time_last = datetime.now()
mouse_move(0, mouse_speed)
# -1 mirrors the image in order to provide user friendly interface
cv2.imshow("Camera Mouse", img[:, ::-1, :])
key = cv2.pollKey()
if key == 27:
break
if __name__ == "__main__":
master = Tk() # create GUI Object
master.title("Camera Mouse GUI")
# list with possible actions
OPTIONS = [
"Left Click",
"Double Click",
"Right Click",
"Esc button"
]
variables = [StringVar(master) for _ in OPTIONS]
# list with possible gestures
ButtonsList = [
"Smile wide with closed mouth",
"Open your mouth as saying 'o'",
"Raising the eyebrows for more than 3 sec",
"Raising the eyebrows for less than 3 sec"
]
for i, label in enumerate(ButtonsList):
lab = Label(master, text=label)
lab.pack()
variables[i].set(OPTIONS[i])
w = OptionMenu(master, variables[i], *OPTIONS) # creates the dropdown menus
w.pack() # displays the "w" object in the GUI window
# add sensitivity
# add speed
button = Button(master, text="save", command=save_callback)
button.pack()
mainloop()