-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPM25.py
309 lines (243 loc) · 10.1 KB
/
PM25.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import torch
import torch.optim as optim
import torch.nn as nn
import gym
import numpy as np
from gym import spaces # 修正: 导入spaces
from sklearn.preprocessing import MinMaxScaler
import tensorly as tl
from tensorly.decomposition import parafac
from tensorly.cp_tensor import cp_to_tensor
import matplotlib.pyplot as plt
import pandas as pd
# 读取数据
data = pd.read_csv('../PM25.csv', header=None).values
data_matrix = data.reshape((36, 264))
scaler = MinMaxScaler()
data_matrix = scaler.fit_transform(data_matrix.T).T
# 定义LSTM模型
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size,
num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(
0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(
0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
# 创建序列数据
def create_sequences(data, seq_length):
xs, ys = [], []
for i in range(len(data) - seq_length):
x = data[i:i+seq_length]
y = data[i+seq_length]
xs.append(x)
ys.append(y)
return np.array(xs), np.array(ys)
seq_length = 48
train_x, train_y = create_sequences(data_matrix.T, seq_length)
train_x = torch.tensor(train_x, dtype=torch.float32)
train_y = torch.tensor(train_y, dtype=torch.float32)
# 定义并训练LSTM模型
input_size = data_matrix.shape[0]
hidden_size = 64
num_layers = 2
output_size = data_matrix.shape[0]
lstm_model = LSTM(input_size, hidden_size, num_layers, output_size)
criterion = nn.MSELoss()
optimizer = optim.Adam(lstm_model.parameters(), lr=0.001)
num_epochs = 50
for epoch in range(num_epochs):
lstm_model.train()
optimizer.zero_grad()
output = lstm_model(train_x)
loss = criterion(output, train_y)
loss.backward()
optimizer.step()
if epoch % 10 == 0:
print(f'Epoch {epoch}, Loss: {loss.item()}')
# PPO部分
class ActorCritic(nn.Module):
def __init__(self, state_size, action_size):
super(ActorCritic, self).__init__()
self.fc1 = nn.Linear(state_size, 128)
self.fc2 = nn.Linear(128, 128)
# 策略网络输出每个动作的概率
self.policy_head = nn.Linear(128, action_size)
# 价值网络输出状态的价值
self.value_head = nn.Linear(128, 1)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
return x
def policy(self, x):
x = self.forward(x)
return torch.softmax(self.policy_head(x), dim=-1)
def value(self, x):
x = self.forward(x)
return self.value_head(x)
# 定义环境
class CellSelectionEnvWithLSTM(gym.Env):
def __init__(self, data_matrix, error_bound, quality_threshold, lstm_model, seq_length):
super(CellSelectionEnvWithLSTM, self).__init__()
self.data_matrix = data_matrix
self.num_cells = data_matrix.shape[0]
self.num_hours = data_matrix.shape[1]
self.error_bound = error_bound
self.quality_threshold = quality_threshold
self.lstm_model = lstm_model
self.seq_length = seq_length
self.selected_cells = []
self.current_time = 0
# 动作空间:选择一个小区
self.action_space = spaces.Discrete(self.num_cells)
# 状态空间:LSTM输出的状态表示
self.observation_space = spaces.Box(
low=0, high=1, shape=(self.num_cells,), dtype=np.float32)
def reset(self):
self.selected_cells = []
self.current_seq = np.zeros((self.seq_length, self.num_cells))
self.current_time = 0
return self._get_state()
def _get_state(self):
self.lstm_model.eval()
with torch.no_grad():
state = self.lstm_model(torch.tensor(
self.current_seq, dtype=torch.float32).unsqueeze(0)).squeeze(0).numpy()
return state
def step(self, action):
if action not in self.selected_cells:
self.selected_cells.append(action)
# 更新当前序列
new_data = self.data_matrix[:, self.current_time]
self.current_seq = np.roll(self.current_seq, -1, axis=0)
self.current_seq[-1] = new_data
state = self._get_state()
reward = self._calculate_reward()
done = self._check_done()
self.current_time += 1
return state, reward, done, {}
def _calculate_reward(self):
selected_data = self.data_matrix[self.selected_cells, :]
inference_error = self._calculate_inference_error(selected_data)
if inference_error <= self.error_bound:
return 1.0 - len(self.selected_cells) / self.num_cells
else:
return -1.0
def _calculate_inference_error(self, selected_data):
selected_data_tensor = tl.tensor(selected_data)
weights, factors = parafac(selected_data_tensor, rank=min(
selected_data.shape[0], selected_data.shape[1]), init='random')
inferred_data = cp_to_tensor((weights, factors))
true_data = np.mean(self.data_matrix, axis=0)
error = np.abs(inferred_data - true_data).mean()
return error
def _check_done(self):
return len(self.selected_cells) >= self.quality_threshold or self.current_time >= self.num_hours
# PPO算法实现
class PPOAgent:
def __init__(self, state_size, action_size, lr=0.001, gamma=0.99, clip_ratio=0.2, critic_loss_coef=0.5, entropy_coef=0.01):
self.gamma = gamma
self.clip_ratio = clip_ratio
self.critic_loss_coef = critic_loss_coef
self.entropy_coef = entropy_coef
self.actor_critic = ActorCritic(state_size, action_size)
self.optimizer = optim.Adam(self.actor_critic.parameters(), lr=lr)
def select_action(self, state):
state = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
probs = self.actor_critic.policy(state)
dist = torch.distributions.Categorical(probs)
action = dist.sample()
return action.item(), dist.log_prob(action), dist.entropy()
def compute_returns(self, rewards, values, dones, next_value):
returns = []
R = next_value
for step in reversed(range(len(rewards))):
R = rewards[step] + self.gamma * R * (1 - dones[step])
returns.insert(0, R)
return returns
def update(self, states, actions, log_probs, returns, values, entropy):
states = torch.tensor(states, dtype=torch.float32)
actions = torch.tensor(actions)
returns = torch.tensor(returns)
old_log_probs = torch.tensor(log_probs)
advantages = returns - torch.tensor(values)
# 获取当前策略的动作概率对数
new_probs = self.actor_critic.policy(states)
dist = torch.distributions.Categorical(new_probs)
new_log_probs = dist.log_prob(actions)
# 计算策略损失
ratio = torch.exp(new_log_probs - old_log_probs)
surr1 = ratio * advantages
surr2 = torch.clamp(ratio, 1.0 - self.clip_ratio,
1.0 + self.clip_ratio) * advantages
policy_loss = -torch.min(surr1, surr2).mean()
# 计算价值损失
value_loss = self.critic_loss_coef * \
(returns - self.actor_critic.value(states)).pow(2).mean()
# 计算熵损失
entropy = torch.stack(entropy) # 将列表转换为张量
entropy_loss = -self.entropy_coef * entropy.mean() # 计算平均值
# 总损失
loss = policy_loss + value_loss + entropy_loss
# 优化
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def train(self, env, num_episodes, batch_size=64):
rewards_all = []
for episode in range(num_episodes):
state = env.reset()
states, actions, log_probs, rewards, values, entropies, dones = [], [], [], [], [], [], []
for t in range(env.num_hours):
action, log_prob, entropy = self.select_action(state)
value = self.actor_critic.value(
torch.tensor(state, dtype=torch.float32))
next_state, reward, done, _ = env.step(action)
states.append(state)
actions.append(action)
log_probs.append(log_prob)
rewards.append(reward)
values.append(value)
entropies.append(entropy)
dones.append(done)
state = next_state
if done:
break
# 获取下一状态的价值并计算回报
next_value = self.actor_critic.value(
torch.tensor(state, dtype=torch.float32)).item()
returns = self.compute_returns(rewards, values, dones, next_value)
# 批量更新策略和价值网络
self.update(states, actions, log_probs, returns, values, entropies)
episode_reward = sum(rewards)
rewards_all.append(episode_reward)
# 打印已选择单元格的比例和总数量
print(f'Episode {episode}, Selected Cells Ratio: {
len(env.selected_cells)} / {env.num_cells}')
if episode % 10 == 0:
print(f'Episode {episode}, Total Reward: {episode_reward}')
return rewards_all
# 初始化环境
state_size = data_matrix.shape[0]
action_size = data_matrix.shape[0]
error_bound = 9 / 36
quality_threshold = 0.9 * data_matrix.shape[1]
env = CellSelectionEnvWithLSTM(
data_matrix, error_bound, quality_threshold, lstm_model, seq_length)
# 训练PPO模型
ppo_agent = PPOAgent(state_size, action_size)
train_rewards = ppo_agent.train(env, num_episodes=100)
# 绘制训练奖励曲线
plt.plot(train_rewards)
plt.xlabel('Episode')
plt.ylabel('Total Reward')
plt.title('Training Rewards')
plt.show()