-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbldc.c
executable file
·209 lines (183 loc) · 4.08 KB
/
bldc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#include <stdint.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <util/atomic.h>
#include <avr/cpufunc.h>
#include "hal.h"
#include "lut.h"
#define PWM_PERIOD 600
#define THROTTLE_MAX ( (PWM_PERIOD-TOV_ISR_LEN)/256 )
#define PWM_ISR_LEN 40
#define TOV_ISR_LEN 40
#define BRIDGE_A 0
#define BRIDGE_B 1
#define BRIDGE_C 2 // could save a few instructions in HAL_PWM_Y_VECTOR if this were zero
uint16_t speed;
uint16_t phase;
uint8_t throttle;
register uint8_t event_x __asm("r4");
register uint8_t event_y __asm("r5");
register uint8_t bridge_x __asm("r6");
register uint8_t bridge_y __asm("r7");
register uint8_t bridge_x_buffer __asm("r8");
register uint8_t bridge_y_buffer __asm("r9");
volatile register uint8_t ready_for_update __asm("r10");
ISR(HAL_PWM_OVF_VECTOR)
{
// OCRn is buffered in hardware
// hal_n_set_ocr will take effect here
event_x = 0;
event_y = 0;
bridge_x = bridge_x_buffer;
bridge_y = bridge_y_buffer;
ready_for_update = 1;
}
ISR(HAL_PWM_X_VECTOR)
{
if (event_x == 0)
{
event_x++;
if (bridge_x == BRIDGE_A)
{
hal_a_high();
}
else
{
hal_b_high();
}
}
else
{
if (bridge_x == BRIDGE_A)
{
hal_a_low();
}
else
{
hal_b_low();
}
}
}
ISR(HAL_PWM_Y_VECTOR)
{
if (event_y == 0)
{
event_y++;
if (bridge_y == BRIDGE_C)
{
hal_c_high();
}
else
{
hal_b_high();
}
}
else
{
if (bridge_y == BRIDGE_C)
{
hal_c_low();
}
else
{
hal_b_low();
}
}
}
void pwm_update()
{
uint8_t i;
uint8_t duty8[3];
uint16_t duty[3];
uint16_t x_duty;
uint16_t y_duty;
uint8_t x_bridge;
uint8_t y_bridge;
phase += speed;
lut_interpolate(duty8, phase);
// apply throttle multiplier and clamp duty[] to the appropriate range
for (i=0; i<3; i++)
{
duty[i] = throttle * duty8[i];
if (duty[i] < PWM_ISR_LEN)
{
duty[i] = 0;
}
if (duty[i] > PWM_PERIOD-TOV_ISR_LEN)
{
duty[i] = PWM_PERIOD-TOV_ISR_LEN;
}
}
// default x and y to disabled
x_duty = PWM_PERIOD+1;
y_duty = PWM_PERIOD+1;
x_bridge = BRIDGE_A;
y_bridge = BRIDGE_C;
// assign bridges to pwm channels
if (duty[BRIDGE_A] != 0)
{
x_bridge = BRIDGE_A;
x_duty = duty[BRIDGE_A];
}
else if (duty[BRIDGE_B] != 0)
{
x_bridge = BRIDGE_B;
x_duty = duty[BRIDGE_B];
}
if (duty[BRIDGE_C] != 0)
{
y_bridge = BRIDGE_C;
y_duty = duty[BRIDGE_C];
}
else if (x_bridge != BRIDGE_B && duty[BRIDGE_B] != 0)
{
y_bridge = BRIDGE_B;
y_duty = duty[BRIDGE_B];
}
// atomic write
ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
{
bridge_x_buffer = x_bridge;
bridge_y_buffer = y_bridge;
hal_x_set_ocr(PWM_PERIOD-x_duty);
hal_y_set_ocr(PWM_PERIOD-y_duty);
}
}
void hal_gpio_setup()
{
HAL_TRACE_DDR |= HAL_TRACE_PIN;
HAL_An_DDR |= HAL_An_PIN;
HAL_Ap_DDR |= HAL_Ap_PIN;
HAL_Bn_DDR |= HAL_Bn_PIN;
HAL_Bp_DDR |= HAL_Bp_PIN;
HAL_Cn_DDR |= HAL_Cn_PIN;
HAL_Cp_DDR |= HAL_Cp_PIN;
hal_a_low();
hal_b_low();
hal_c_low();
}
void setup()
{
speed = 1000;//0x10000/60;
phase = 0;
throttle = 1;//THROTTLE_MAX;
pwm_update();
hal_gpio_setup();
hal_pwm_timer_setup(PWM_PERIOD);
sei();
}
int main()
{
setup();
while (1)
{
if (ready_for_update)
{
pwm_update();
ready_for_update = 0;
continue;
}
hal_toggle_pin_atomic(&HAL_TRACE_PORT, HAL_TRACE_PIN);
}
return 0;
}