-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
241 lines (197 loc) · 7.94 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import socket, select
import traceback
from collections import deque
import matplotlib.pyplot as plt
from threading import Thread
import time
import serial
from serial.serialutil import SerialException
import seaborn as sns
import matplotlib.ticker as ticker
CONNECTION_LIST = []
TEMP_MONITORS = []
RECV_BUFFER = 4096
PORT = 5000
GRAPH_WAIT_TIME = 1
UPDATE_TIME_WAIT_TIME = 300
SPEED_UPDATE_WAIT_TIME = 1
USB_PORT = "/dev/ttyUSB0"
MAX_TEMP = 45
HEAT_MAP = [[26,26,26,26,26,26,26,26,26],
[26,26,26,26,26,26,26,26,26],
[26,26,26,26,26,26,26,26,26],
[26,26,26,26,26,26,26,26,26],
[26,26,26,26,26,26,26,26,26],
[26,26,26,26,26,26,26,26,26],
[26,26,26,26,26,26,26,26,26],
[26,26,26,26,26,26,26,26,26],
[26,26,26,26,26,26,26,26,26]]
ROBOT_SPEED = {
"left": deque(30*[0], 30),
"right": deque(30*[0], 30)
}
fig = plt.figure()
sensor0_pos=(0, 4)
sensor1_pos=(4, 8)
sensor2_pos=(8, 4)
sensor3_pos=(4, 0)
sensors_pos = (sensor0_pos, sensor1_pos, sensor2_pos, sensor3_pos)
TEMP_CONST = 0.026
# Função para imprimir matrizes de forma facil de ler, utilizada apenas para debug
def pretty_print(matrix):
s = [[str(e) for e in row] for row in matrix]
lens = [max(map(len, col)) for col in zip(*s)]
fmt = '\t'.join('{{:{}}}'.format(x) for x in lens)
table = [fmt.format(*row) for row in s]
print('\n'.join(table))
# Função para atualizar as temperaturas na matriz HEATMAP, considerando as temperaturas medidas pelos sensores
def interpolate_heatmap():
global HEAT_MAP
for s in sensors_pos:
if HEAT_MAP[s[0]][s[1]] != 26:
for i in range(-4, 5):
for j in range(-4, 5):
try:
pos_x = s[0] + i
pos_y = s[1] + j
if pos_x >= 0 and pos_y >= 0 and (i != 0 or j != 0):
HEAT_MAP[pos_x][pos_y] += round(( (HEAT_MAP[s[0]][s[1]] - HEAT_MAP[pos_x][pos_y]) * ( 9 - ( abs(i) + abs(j) ) ) * TEMP_CONST), 2)
except IndexError:
pass
# Função para atualizar as temperaturas dos sensores no heatmap
def update_heatmap():
global HEAT_MAP
for monitor in TEMP_MONITORS:
if monitor.number == "ID1":
HEAT_MAP[0][4] = monitor.temps[29]
elif monitor.number == "ID2":
HEAT_MAP[4][8] = monitor.temps[29]
elif monitor.number == "ID3":
HEAT_MAP[8][4] = monitor.temps[29]
elif monitor.number == "ID4":
HEAT_MAP[4][0] = monitor.temps[29]
interpolate_heatmap()
# Função para atualizar toda a janela com o gráfico e o heatmap
def update_graph():
plt.subplots_adjust(hspace = 0.5)
plt.clf()
ax1 = fig.add_subplot(221)
plot = None
for monitor in TEMP_MONITORS:
plot = plt.plot(range(len(monitor.temps)), monitor.temps, label=monitor.number)
if plot:
leg = plt.legend(loc="upper right", shadow=True, fancybox=True)
leg.get_frame().set_alpha(0.5)
plt.title("Monitor de temperatura")
plt.ylim(0, 150)
ax2 = fig.add_subplot(122)
update_heatmap()
sns.heatmap(HEAT_MAP, vmin=20, vmax=200, square=True)
plt.title("Heat Map")
ax3 = fig.add_subplot(223)
plot = plt.plot(range(len(ROBOT_SPEED["left"])), ROBOT_SPEED["left"], label="LEFT")
plot = plt.plot(range(len(ROBOT_SPEED["right"])), ROBOT_SPEED["right"], label="RIGHT")
leg = plt.legend(loc="upper right", shadow=True, fancybox=True)
leg.get_frame().set_alpha(0.5)
plt.title("Monitor de velocidade")
plt.ylim(-120, 120)
plt.pause(0.05)
# Retorna o monitor a partir do socket que mandou a mensagem
def get_temp_monitor(monitors, socket):
for monitor in monitors:
if monitor.socket == socket:
return monitor
# Função para mandar o tempo do servidor para os sensores
def update_time_on_sensors():
print("updating time")
for temp in TEMP_MONITORS:
temp.socket.send(time.strftime('%Y%m%d%H%M%S', time.localtime()).encode('utf-8'))
def update_robot_speed(serial):
global ROBOT_SPEED
msg = serial.readline().decode("utf-8")
if msg:
try:
data = msg.split(',')
left_speed = data[3]
right_speed = data[4]
ROBOT_SPEED["left"].append(int(left_speed))
ROBOT_SPEED["right"].append(int(right_speed))
except IndexError:
pass
# Classe base dos monitores de temperatura
class TempMonitor():
def __init__(self, socket):
# FIFO com 30 ultimas temperaturas
self.temps = deque(30*[0], 30)
self.socket = socket
self.number = ""
def log_temperature(self, temp):
self.temps.append(float(temp[:5]))
# Caso a temperatura lida por esse sensor seja maior do que o maximo esperado, envia para o robo o numero deste sensor
def check_and_notify(self, serial, temp):
if float(temp) > MAX_TEMP:
print("warning robots")
if serial:
serial.write("{number}$".format(number=self.number[2]).encode("utf-8"))
if __name__ == "__main__":
# Conexão com a porta serial para o XBee
try:
serial = serial.Serial(USB_PORT, 57600, timeout=1)
if not serial.isOpen():
serial.open()
except SerialException:
serial = None
print("Serial não conectada")
# Inicialização do socket para receber as conexões
server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server_socket.bind(('0.0.0.0', PORT))
server_socket.listen(10)
CONNECTION_LIST.append(server_socket)
print("Server started on port " + str(PORT))
last_time_graph = time.time()
last_time_update_time = time.time()
last_time_update_speed = time.time()
# Loop principal do servidor
while 1:
# Update periodico nos graficos e heatmap
if time.time() - last_time_graph >= GRAPH_WAIT_TIME:
update_graph()
last_time_graph = time.time()
# Envio periodico do tempo do servidor para os sensores
if time.time() - last_time_update_time >= UPDATE_TIME_WAIT_TIME:
update_time_on_sensors()
last_time_update_time = time.time()
if time.time() - last_time_update_speed >= SPEED_UPDATE_WAIT_TIME and serial:
update_robot_speed(serial)
last_time_update_speed = time.time()
read_sockets,write_sockets,error_sockets = select.select(CONNECTION_LIST,[],[], 1)
for sock in read_sockets:
if sock == server_socket:
sockfd, addr = server_socket.accept()
CONNECTION_LIST.append(sockfd)
monitor = TempMonitor(sockfd)
TEMP_MONITORS.append(monitor)
print("Client (%s, %s) connected" % addr)
else:
try:
data = sock.recv(RECV_BUFFER)
monitor = get_temp_monitor(TEMP_MONITORS, sock)
if not monitor.number:
monitor.number = data.decode("utf-8")[:3]
sock.send('OK1'.encode('utf-8'))
else:
monitor.log_temperature(data)
monitor.check_and_notify(serial, data)
print("Received {data} from monitor {monitor}".format(data=data, monitor=monitor.number))
if data:
sock.send('OK'.encode('utf-8'))
except Exception as e:
monitor = get_temp_monitor(TEMP_MONITORS, sock)
TEMP_MONITORS.remove(monitor)
traceback.print_exc()
print("Client (%s, %s) is offline" % addr)
sock.close()
CONNECTION_LIST.remove(sock)
continue
server_socket.close()