forked from karancode-singh/Photogenic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
333 lines (262 loc) · 9.74 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
from flask import Flask ,render_template, jsonify
import random
import base64
# importing necessary packages
import numpy as np
import argparse
import cv2
from scipy.spatial import distance
from imutils import face_utils
import imutils
import dlib
import time
import numpy as np
import os
import numpy as np
import pickle
import json
### OpenCV ###
def face_points_detection(img, bbox):
PREDICTOR_PATH = 'shape_predictor_68_face_landmarks.dat'
predictor = dlib.shape_predictor(PREDICTOR_PATH)
# Get the landmarks/parts for the face in box d.
shape = predictor(img, bbox)
# loop over the 68 facial landmarks and convert them
# to a 2-tuple of (x, y)-coordinates
coords = [(shape.part(i).x, shape.part(i).y) for i in range(68)]
# return the list of (x, y)-coordinates
return coords
from face_swap import warp_image_2d, warp_image_3d, mask_from_points, apply_mask, correct_colours, transformation_from_points
def view(out):
out = imutils.resize(out, width=1000)
cv2.imshow("Output", out)
cv2.waitKey(0)
cv2.destroyAllWindows()
def select_face(bbox, im, r=10):
points = np.asarray(face_points_detection(im, bbox))
im_w, im_h = im.shape[:2]
left, top = np.min(points, 0)
right, bottom = np.max(points, 0)
x, y = max(0, left-r), max(0, top-r)
w, h = min(right+r, im_h)-x, min(bottom+r, im_w)-y
return points - np.asarray([[x, y]]), (x, y, w, h), im[y:y+h, x:x+w]
def smileVal(s1,s2):
if np.isnan(s1):
return s2
if np.isnan(s2):
return s1
if s1<0.3 or s2<0.3:
return min(s1,s2)
return (s1+s2)/2
def swap(sF,iF,sT,iT):
warp_2d = True ##!!
correct_color = True ##!!
# Select src face
src_points, src_shape, src_face = select_face(sF,iF)
# view(src_face)
# Select dst face
dst_points, dst_shape, dst_face = select_face(sT,iT)
# view(dst_face)
w, h = dst_face.shape[:2]
### Warp Image
if not warp_2d:
## 3d warp
warped_src_face = warp_image_3d(src_face, src_points[:48], dst_points[:48], (w, h))
else:
## 2d warp
src_mask = mask_from_points(src_face.shape[:2], src_points)
src_face = apply_mask(src_face, src_mask)
# Correct Color for 2d warp
if correct_color:
warped_dst_img = warp_image_3d(dst_face, dst_points[:48], src_points[:48], src_face.shape[:2])
src_face = correct_colours(warped_dst_img, src_face, src_points)
# Warp
warped_src_face = warp_image_2d(src_face, transformation_from_points(dst_points, src_points), (w, h, 3))
## Mask for blending
mask = mask_from_points((w, h), dst_points)
mask_src = np.mean(warped_src_face, axis=2) > 0
mask = np.asarray(mask*mask_src, dtype=np.uint8)
## Correct color
if not warp_2d and correct_color:
warped_src_face = apply_mask(warped_src_face, mask)
dst_face_masked = apply_mask(dst_face, mask)
warped_src_face = correct_colours(dst_face_masked, warped_src_face, dst_points)
## Shrink the mask
kernel = np.ones((10, 10), np.uint8)
mask = cv2.erode(mask, kernel, iterations=1)
##Poisson Blending
r = cv2.boundingRect(mask)
center = ((r[0] + int(r[2] / 2), r[1] + int(r[3] / 2)))
output = cv2.seamlessClone(warped_src_face, dst_face, mask, center, cv2.NORMAL_CLONE)
x, y, w, h = dst_shape
dst_img_cp = iT.copy()
dst_img_cp[y:y+h, x:x+w] = output
output = dst_img_cp
return output
def getFaces(img):
subjects = []
fcords = []
image = img
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (103.93, 116.77, 123.68))
net.setInput(blob)
detections = net.forward()
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the
# prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence > conf:
# compute the (x, y)-coordinates of the bounding box for the
# object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
fcords.append([startX, startY, endX, endY])
faceBoxRectangleS = dlib.rectangle(left=int(startX), top=int(startY), right=int(endX), bottom=int(endY))
subjects.append(faceBoxRectangleS)
# draw the bounding box of the face along with the associated
# probability
# text = "{:.2f}%".format(confidence * 100)
# y = startY - 10 if startY - 10 > 10 else startY + 10
# cv2.rectangle(image, (startX, startY), (endX, endY),
# (0, 0, 255), 2)
# cv2.putText(image, text, (startX, y),
# cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
return subjects,fcords
def eye_aspect_ratio(eye):
A = distance.euclidean(eye[1], eye[5])
B = distance.euclidean(eye[2], eye[4])
C = distance.euclidean(eye[0], eye[3])
ear = (A + B) / (2.0 * C)
return ear
def getEAR(img,subjects):
ears = []
smiles = []
image = img
frame = image.copy()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
for subject in subjects:
shape = predict(gray, subject)
shape = face_utils.shape_to_np(shape)
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
mouth= shape[mStart:mEnd]
mouthHull = cv2.convexHull(mouth)
xpoints = [x[0][0] for x in mouthHull]
ypoints = [x[0][1] for x in mouthHull]
xminidx = np.argmin(xpoints)
y1 = ypoints[xminidx]
x1 = xpoints[xminidx]
yminidx = np.argmin(ypoints)
y2 = ypoints[yminidx]
x2 = xpoints[yminidx]
xmaxidx = np.argmax(xpoints)
x3 = xpoints[xmaxidx]
y3 = ypoints[xmaxidx]
ymaxidx = np.argmax(ypoints)
x4 = xpoints[ymaxidx]
y4 = ypoints[ymaxidx]
s1 = (y1 - y2)/(x2 - x1)
s2 = (y3 - y2)/(x3 - x2)
smiles.append(smileVal(s1,s2))
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
ear = (leftEAR + rightEAR) / 2.0
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 2)
cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 2)
cv2.drawContours(frame, [mouthHull], -1, (0, 255, 0), 2)
ears.append(ear)
# view(frame)
print("smiles",smiles)
print("ears",ears)
return ears,smiles
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_68_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_68_IDXS["right_eye"]
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
protpath = os.path.join(os.getcwd(),'deploy.prototxt.txt')
modpath = os.path.join(os.getcwd(),'res10_300x300_ssd_iter_140000.caffemodel')
net = cv2.dnn.readNetFromCaffe(protpath, modpath)
conf = 0.36
thresh = 0.25
frame_check = 20
detect = dlib.get_frontal_face_detector()
predict = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")# Dat file is the crux of the code
def main(images):
subs = []
fcords = []
eors = []
smls = []
numFaces = -1
for image in images:
s,f = getFaces(image)
if numFaces == -1:
numFaces = len(f)
else:
if not numFaces == len(f):
print("number of faces mismatch")
break
s = sorted(s,key = lambda kv: kv.left())
subs.append(s)
fcords.append(f)
eorsVals,smileVals = getEAR(image,s)
eors.append(eorsVals)
smls.append(smileVals)
res = []
for i in range(numFaces):
eorsForThisFace = []
smileForThisFace = []
for j in range(len(images)):
eorsForThisFace.append(eors[j][i])
smileForThisFace.append(smls[j][i])
earArgMax = np.argmax(eorsForThisFace)
earMax = max(eorsForThisFace)
if earMax < 0.2:
res.append(earArgMax)
else:
for i,earVal in enumerate(eorsForThisFace):
if earVal < 0.2:
smileForThisFace[i] = 10000
res.append(np.argmin(smileForThisFace))
print(res)
out = images[0].copy()
for i in range(numFaces):
if not res[i] == 0:
imnum = res[i]
out = swap(subs[imnum][i],images[imnum],subs[0][i],out)
return out
##############
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/api/<params>')
def strApi(params):
print("Params")
# print(params)
# with open('params.pkl', 'wb') as output:
# pickle.dump(params, output, pickle.HIGHEST_PROTOCOL)
imstrs = [SlashError(x) for x in params.split('*')]
# print(imstrs)
images = []
for im in imstrs:
b = base64.b64decode(im)
with open('test.jpg','wb+') as f:
f.write(b)
images.append(cv2.imread('test.jpg'))
print(len(images))
# for im in images:
# view(im)
output = main(images)
# view(output)
cv2.imwrite('testo.jpg',output)
return base64.b64encode(output)
def SlashError(string):
string = string.replace('@', '/')
string = string.replace('^', '=')
return string
if __name__ == "__main__":
# app.run(host = "0.0.0.0",port = "5000",debug = True)
app.run(host='0.0.0.0')