-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwdist.py
73 lines (64 loc) · 2.91 KB
/
wdist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
'''
script to compute wasserstein distance between persistence diagrams using optimal transport and its regularized version
@author: Theo Lacombe
'''
import numpy as np
import scipy.spatial.distance as sc
try:
import ot
except ImportError:
print("POT (Python Optimal Transport) package is not installed. Try to run $ pip install POT")
def proj_on_diag(X):
'''
param X: a (n x 2) array encoding the points of a persistent diagram.
return: a (n x 2) arary encoding the (respective orthogonal) projections of the points onto the diagonal
'''
Z = (X[:,0] + X[:,1]) / 2.
return np.array([Z , Z]).T
def build_dist_matrix(X,Y,p=2.):
'''
param X: (n x 2) np.array encoding the (points of the) first diagram.
param Y: (m x 2) np.array encoding the second diagram.
param p: exponent for *both* the ground metric and the Wasserstein metric. That is, we compute the p-Wasserstein distance (1 <= p < infty) with respect to the p-norm as ground metric.
return: (n+1) x (m+1) np.array encoding the cost matrix C.
For 1 <= i <= n, 1 <= j <= m, C[i,j] encodes the distance between X[i] and Y[j], while C[i, m+1] (resp. C[n+1, j]) encodes the distance (to the p) between X[i] (resp Y[j]) and its orthogonal proj onto the diagonal.
note also that C[n+1, m+1] = 0 (it costs nothing to move from the diagonal to the diagonal).
'''
C = sc.cdist(X,Y, metric='minkowski', p=p)**p
Xdiag = proj_on_diag(X)
Ydiag = proj_on_diag(Y)
Cxd = np.linalg.norm(X - Xdiag, ord=p, axis=1)**p
Cf = np.hstack((C, Cxd[:,None]))
Cdy = np.linalg.norm(Y - Ydiag, ord=p, axis=1)**p
Cdy = np.append(Cdy, 0)
Cf = np.vstack((Cf, Cdy[None,:]))
return Cf
def Wdist(X, Y, reg=0., p=2.):
'''
param X, Y: (n x 2) and (m x 2) numpy array (points of persistence diagrams)
param reg: regularization parameters for entropic smoothing. If 0., exact computation.
param p: exponent for Wasserstein;
return: float, estimation of the Wasserstein distance between two diagrams (exact if reg = 0.).
'''
M = build_dist_matrix(X,Y,p=p)
n = len(X)
m = len(Y)
a = 1.0 / (n + m) * np.ones(n) # weight vector of the input diagram. Uniform here.
hat_a = np.append(a, m/(n+m)) # so that we have a probability measure, required by POT
b = 1.0 / (n + m) * np.ones(m) # weight vector of the input diagram. Uniform here.
hat_b = np.append(b, n/(m+n)) # so that we have a probability measure, required by POT
if reg > 0:
ot_cost = (n+m) * ot.bregman.sinkhorn2(hat_a, hat_b, M, reg=reg)
else:
ot_cost = (n+m) * ot.emd2(hat_a, hat_b, M)
return np.power(ot_cost, 1./p)
if __name__=="__main__":
'''
Short test script
'''
X = np.array([[2.7, 3.7],[9.6, 14.],[34.2, 34.974]])
Y = np.array([[2.8, 4.45],[9.5, 14.1]])
p = 2.
reg = 0.
print("Estimation of Wasserstein distance:")
print(Wdist(X, Y, reg=reg, p=p))