Skip to content

Commit be39ada

Browse files
committed
Adding images and fixing links for multiple scripts
1 parent 4dfb81c commit be39ada

File tree

32 files changed

+97
-4
lines changed

32 files changed

+97
-4
lines changed

sentinel-2/bais2/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -18,3 +18,9 @@ BAIS2 adapts the traditional BAI for Sentinel-2 bands, taking advantage of the w
1818

1919
Values description: The range of values for the BAIS2 is -1 to 1 for burn scars, and 1 - 6 for active fires. Different fire intensities
2020
may result in different thresholds, the current values were calibrates, as per original author, on mostly Mediterranen regions.
21+
22+
## Description of representative images
23+
24+
Burned area index, Las Palmas de Grand Canaria. Acquired on 19.08.2019.
25+
26+
![snow classifier](fig/fig1.png)

sentinel-2/bais2/fig/fig1.png

1.51 MB
Loading

sentinel-2/cab/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -19,3 +19,9 @@ Cab (leaf cholrophyll content (μg / cm ^ 2)) corresponds to the content of chlo
1919
Note that the Cab script is as implemented in SNAP but without input and output validation!
2020
Input/output values which are suspect are not reported or changed. Most values, however, do not fall under this category.
2121
Visualized as an interval from 0-300. This can be adjusted in the evaluatePixel method.
22+
23+
## Description of representative images
24+
25+
Leaf chlorophyl index of Rome. Acquired on 8.10.2017.
26+
27+
![CAB of Rome](fig/fig1.png)

sentinel-2/cab/fig/fig1.png

1.59 MB
Loading

sentinel-2/cby_cloud_detection/README.md

+4
Original file line numberDiff line numberDiff line change
@@ -37,6 +37,10 @@ The threshold for $\tau$ was chosen arbitrarily; a more educated guess would pro
3737

3838
Try it on [Sentinel Playground](https://apps.sentinel-hub.com/sentinel-playground/?lat=46.65120371539995&lng=13.809814453125&zoom=13&preset=CUSTOM&layers=B04,B03,B12&maxcc=50&time=2015-01-01%7C2017-06-06&evalscript=dmFyIGJSYXRpbyA9IChCMDIgLSAwLjE3NSkgLyAoMC4zOSAtIDAuMTc1KTsKdmFyIE5HRFIgPSAoQjAyIC0gQjAzKSAvIChCMDIgKyBCMDMpOwoKZnVuY3Rpb24gY2xpcChhKSB7CiAgcmV0dXJuIE1hdGgubWF4KDAsIE1hdGgubWluKDEsIGEpKTsKfQoKaWYgKEIxMT4wLjEgJiYgYlJhdGlvID4gMSkgeyAvL2Nsb3VkCiAgdmFyIHYgPSAwLjUqKGJSYXRpbyAtIDEpOwogIHJldHVybiBbMC41KmNsaXAoQjA0KSwgMC41KmNsaXAoQjAzKSwgMC41KmNsaXAoQjAyKSArIHZdOwp9CgppZiAoQjExID4gMC4xICYmIGJSYXRpbyA%2BIDAgJiYgTkdEUj4wKSB7IC8vY2xvdWQKICB2YXIgdiA9IDUgKiBNYXRoLnNxcnQoYlJhdGlvICogTkdEUik7CiAgcmV0dXJuIFswLjUgKiBjbGlwKEIwNCkgKyB2LCAwLjUgKiBjbGlwKEIwMyksIDAuNSAqIGNsaXAoQjAyKV07Cn0KCnJldHVybiBbMipCMDQsIDIqQjAzLCAyKkIwMl07){:target="_blank"} or download the script from [here](script.js){:target="_blank"}.
3939

40+
## Description of representative images
41+
42+
Braaten-Cohen-Yang cloud detector, of Orbetello, Italy. Acquired on 6.10.2017.
43+
![Canopy chlorophyll index](fig/fig1.png)
4044

4145
## References
4246
- [1] Braaten J, Cohen WB, Yang Z. 2015. _Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems_. Remote Sensing of Environment. 169:128-138.
2.49 MB
Loading

sentinel-2/ccc/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -19,3 +19,9 @@ CCC (Canopy Chlorophyll Content (μg / cm ^ 2)) is calculated here as the produc
1919
Note that the LAI and Cab scripts are as implemented in SNAP but without input and output validation!
2020
Input/output values which are suspect are not reported or changed. Most values, however, do not fall under this category.
2121
Visualized as an interval from 0-900. This can be adjusted in the evaluatePixel method.
22+
23+
## Description of representative images
24+
25+
Canopy chlorophyll index, Rome. Acquired on 8.10.2017.
26+
![Canopy chlorophyll index](fig/fig1.png)
27+

sentinel-2/ccc/fig/fig1.png

1.42 MB
Loading

sentinel-2/false_color_infrared/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -15,6 +15,12 @@
1515

1616
The [False color](https://en.wikipedia.org/wiki/False_color) infrared product maps near-infrared spectral band B8 with red and green bands, B4 and B3, to [sRGB](https://en.wikipedia.org/wiki/SRGB) components directly. This product yields the image in which vegetation is shown in the red component.
1717

18+
## Description of representative images
19+
20+
False color composite of Rome. Acquired on 8.10.2017.
21+
22+
![False color composite of Rome](fig/fig1.png)
23+
1824
## References
1925
- [1] Wikipedia, [False color](https://en.wikipedia.org/wiki/False_color). Accessed October 10th 2017.
2026
- [2] Wikipedia, [sRGB](https://en.wikipedia.org/wiki/SRGB). Accessed October 10th 2017.
2.95 MB
Loading

sentinel-2/fapar/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -20,3 +20,9 @@ FAPAR is the fraction of incoming solar radiation absorbed for photosynthesis by
2020
Note that the FAPAR script is as implemented in SNAP but without input and output validation!
2121
Input/output values which are suspect are not reported or changed. Most values, however, do not fall under this category.
2222
Visualized as an interval from 0-1. This can be adjusted in the evaluatePixel method.
23+
24+
## Description of representative images
25+
26+
FAPAR visualization of Rome. Acquired on 8.10.2017.
27+
28+
![FAPAR of Rome](fig/fig1.png)

sentinel-2/fapar/fig/fig1.png

1.6 MB
Loading

sentinel-2/hollstein/README.md

+5
Original file line numberDiff line numberDiff line change
@@ -19,6 +19,11 @@ A paper about cloud detection [1], shows a fairly complex classification decisio
1919

2020
The colours correspond to the colours from the article, apart from the colours for clear and shadow, which are made into natural (true) colour from red, green and blue bands.
2121

22+
## Description of representative images
23+
24+
Hollstein cloud detection, Slovenia. Acquired on 9.10.2017.
25+
26+
![Hollstein](fig/fig1.png)
2227

2328
## References
2429

sentinel-2/hollstein/fig/fig1.png

2.75 MB
Loading

sentinel-2/lai/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -20,3 +20,9 @@ LAI is a dimensionless index measuring the one-sided green leaf area over a unit
2020
Note that the LAI script is as implemented in SNAP but without input and output validation!
2121
Input/output values which are suspect are not reported or changed. Most values, however, do not fall under this category.
2222
Visualized as an interval from 0-3. This can be adjusted in the evaluatePixel method.
23+
24+
## Description of representative images
25+
26+
Leaf area index, Rome. Acquired on 08.10.2017.
27+
28+
![snow classifier](fig/fig1.png)

sentinel-2/lai/fig/fig1.png

1.81 MB
Loading

sentinel-2/ndvi/README.md

+7-1
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
</div>
99

1010
## Evaluate and visualize
11-
- [Sentinel Playground](https://apps.sentinel-hub.com/sentinel-playground/?source=S2&lat=41.9027835&lng=12.496365500000024&zoom=12&evalscripturl=https://raw.githubusercontent.com/sentinel-hub/customScripts/master/sentinel-2/ndvi/script.js){:target="_blank"}
11+
- [Sentinel Playground](https://apps.sentinel-hub.com/sentinel-playground/?source=S2&lat=41.9027835&lng=12.496365500000024&zoom=12&preset=CUSTOM&layers=B01,B02,B03&maxcc=20&gain=1.0&gamma=1.0&time=2019-05-01%7C2019-11-04&atmFilter=&showDates=false&evalscript=CmxldCBuZHZpQ29sb3JNYXAgPSBbCglbLTEuMCwgMHgwMDAwMDBdLAoJWy0wLjIsIDB4RkYwMDAwXSwKCVstMC4xLCAweDlBMDAwMF0sCglbMC4wLCAweDY2MDAwMF0sCglbMC4xLCAweEZGRkYzM10sCglbMC4yLCAweENDQ0MzM10sCglbMC4zLCAweDY2NjYwMF0sCglbMC40LCAweDMzRkZGRl0sCglbMC41LCAweDMzQ0NDQ10sCglbMC42LCAweDAwNjY2Nl0sCglbMC43LCAweDMzRkYzM10sCglbMC44LCAweDMzQ0MzM10sCglbMC45LCAweDAwNjYwMF0KXTsKCmZ1bmN0aW9uIGluZGV4KHgsIHkpIHsKCXJldHVybiAoeCAtIHkpIC8gKHggKyB5KTsKfQoKZnVuY3Rpb24gdG9SR0IodmFsKSB7CglyZXR1cm4gW3ZhbCA%2BPj4gMTYsIHZhbCA%2BPj4gOCwgdmFsXS5tYXAoeCA9PiAoeCAmIDB4RkYpIC8gMHhGRik7Cn0KCi8vIFdlIHNob3VsZCBpbnRlcnBvbGF0ZSBiZXR3ZWVuIG5laWdoYm9yaW5nIGNvbG9ycwpmdW5jdGlvbiBmaW5kQ29sb3IoY29sVmFsUGFpcnMsIHZhbCkgewoJbGV0IG4gPSBjb2xWYWxQYWlycy5sZW5ndGg7Cglmb3IgKGxldCBpID0gMTsgaSA8IG47IGkrKykgewoJCWlmICh2YWwgPD0gY29sVmFsUGFpcnNbaV1bMF0pIHsKCQkJcmV0dXJuIHRvUkdCKGNvbFZhbFBhaXJzW2ktMV1bMV0pOwoJCX0KCX0KCXJldHVybiB0b1JHQihjb2xWYWxQYWlyc1tuLTFdWzFdKTsKfQoKcmV0dXJuIGZpbmRDb2xvcihuZHZpQ29sb3JNYXAsIGluZGV4KEIwOCwgQjA0KSk7Cg%3D%3D&evalscripturl=https://raw.githubusercontent.com/sentinel-hub/customScripts/master/sentinel-2/ndvi/script.js){:target="_blank"}
1212
- [EO Browser](http://apps.sentinel-hub.com/eo-browser/#lat=41.9&lng=12.5&zoom=10&datasource=Sentinel-2%20L1C&time=2017-10-08&preset=CUSTOM&layers=B01,B02,B03&evalscript=CmxldCBuZHZpQ29sb3JNYXAgPSBbCglbLTEuMCwgMHgwMDAwMDBdLAoJWy0wLjIsIDB4RkYwMDAwXSwKCVstMC4xLCAweDlBMDAwMF0sCglbMC4wLCAweDY2MDAwMF0sCglbMC4xLCAweEZGRkYzM10sCglbMC4yLCAweENDQ0MzM10sCglbMC4zLCAweDY2NjYwMF0sCglbMC40LCAweDMzRkZGRl0sCglbMC41LCAweDMzQ0NDQ10sCglbMC42LCAweDAwNjY2Nl0sCglbMC43LCAweDMzRkYzM10sCglbMC44LCAweDMzQ0MzM10sCglbMC45LCAweDAwNjYwMF0KXTsKCmZ1bmN0aW9uIGluZGV4KHgsIHkpIHsKCXJldHVybiAoeCAtIHkpIC8gKHggKyB5KTsKfQoKZnVuY3Rpb24gdG9SR0IodmFsKSB7CglyZXR1cm4gW3ZhbCA%2BPj4gMTYsIHZhbCA%2BPj4gOCwgdmFsXS5tYXAoeCA9PiAoeCAmIDB4RkYpIC8gMHhGRik7Cn0KCi8vIFdlIHNob3VsZCBpbnRlcnBvbGF0ZSBiZXR3ZWVuIG5laWdoYm9yaW5nIGNvbG9ycwpmdW5jdGlvbiBmaW5kQ29sb3IoY29sVmFsUGFpcnMsIHZhbCkgewoJbGV0IG4gPSBjb2xWYWxQYWlycy5sZW5ndGg7Cglmb3IgKGxldCBpID0gMTsgaSA8IG47IGkrKykgewoJCWlmICh2YWwgPD0gY29sVmFsUGFpcnNbaV1bMF0pIHsKCQkJcmV0dXJuIHRvUkdCKGNvbFZhbFBhaXJzW2ktMV1bMV0pOwoJCX0KCX0KCXJldHVybiB0b1JHQihjb2xWYWxQYWlyc1tuLTFdWzFdKTsKfQoKcmV0dXJuIGZpbmRDb2xvcihuZHZpQ29sb3JNYXAsIGluZGV4KEIwOCwgQjA0KSk7Cg%3D%3D){:target="_blank"}
1313

1414
## General description
@@ -18,6 +18,12 @@ $$NDVI := \mathtt{Index}(B8,B4) = \frac{B8-B4}{B8+B4}.$$
1818

1919
It is a good proxy for live green vegetation; see [1] for details.
2020

21+
## Description of representative images
22+
23+
NDVI of Rome. Acquired on 8.10.2017.
24+
25+
![NDVI of Rome](fig/fig1.png)
26+
2127
## Color legend
2228
<table>
2329
<tr>

sentinel-2/ndvi/fig/fig1.png

1.06 MB
Loading

sentinel-2/ndvi_uncertainty/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -31,6 +31,12 @@ where $\Delta_{B4}$ and $\Delta_{B8}$ are uncertainties of red and near infrared
3131
The script encodes the uncertainty with darkness, as can be seen in following figure [[2]](#ref2)
3232
![Color map of the NDVI uncertainty script from [2][1]](fig/cmap.jpg)
3333

34+
## Description of representative images
35+
36+
NDVI with uncertainty of Madrid. Acquired on 10.26.2019.
37+
38+
![NDVI of Rome](fig/fig1.png)
39+
3440
## References
3541
<a name="ref1"></a>[1] Wikipedia, [Normalized Difference Vegetation Index
3642
](https://en.wikipedia.org/wiki/Normalized_Difference_Vegetation_Index). Accessed on October 4th 2017.
2.43 MB
Loading

sentinel-2/ndwi/README.md

+7-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
## Evaluate and visualize
44
- [Sentinel Playground](https://apps.sentinel-hub.com/sentinel-playground/?source=S2&lat=43.514198796857976&lng=16.601028442382812&zoom=11&evalscripturl=https://raw.githubusercontent.com/sentinel-hub/custom-scripts/master/sentinel-2/ndwi/script.js){:target="_blank"}
5-
- [EO Browser](http://apps.sentinel-hub.com/eo-browser/#lat=41.9&lng=12.5&zoom=10&datasource=Sentinel-2%20L1C&time=2017-10-08&preset=CUSTOM&layers=B01,B02,B03&evalscripturl=https://raw.githubusercontent.com/sentinel-hub/customScripts/master/sentinel-2/ndwi/script.js){:target="_blank"}
5+
- [EO Browser](https://apps.sentinel-hub.com/eo-browser/?lat=41.9000&lng=12.5000&zoom=10&time=2017-10-08&preset=CUSTOM&datasource=Sentinel-2%20L1C&layers=B01,B02,B03&evalscript=Ly9Tb3VyY2U6IGh0dHBzOi8vZW4ud2lraXBlZGlhLm9yZy93aWtpL05vcm1hbGl6ZWRfZGlmZmVyZW5jZV93YXRlcl9pbmRleAoKLy9vcHRpb24gMSwgdXNlZCB0byBtb25pdG9yIGNoYW5nZXMgaW4gd2F0ZXIgY29udGVudCBvZiBsZWF2ZXMsIHByb3Bvc2VkIGJ5IEdhbwovL2h0dHA6Ly9jZWVzZXJ2ZXIuY2VlLmNvcm5lbGwuZWR1L3dkcDIvY2VlNjE1MC9SZWFkaW5ncy9HYW9fMTk5Nl9SU0VfNThfMjU3LTI2Nl9ORFdJLnBkZgp2YXIgbmR3aSA9IChCMDgtQjExKS8oQjA4K0IxMSk7CgovL29wdGlvbiAyLCB1c2VkIHRvIG1vbml0b3IgY2hhbmdlcyByZWxhdGVkIHRvIHdhdGVyIGNvbnRlbnQgaW4gd2F0ZXIgYm9kaWVzLCB1c2luZyBncmVlbiBhbmQgTklSIHdhdmVsZW5ndGhzLCBkZWZpbmVkIGJ5IE1jRmVldGVycyAoMTk5Nik6Ci8vdmFyIG5kd2kgPSAoQjAzIC0gQjA4KSAvIChCMDMgKyBCMDgpOwoKaWYgKG5kd2kgPCAtMCkgewogIHJldHVybiBjb2xvckJsZW5kKC1uZHdpLCBbMCwxXSwgW1sxLDEsMV0sWzAsMC41LDBdXSk7CiAgCn0gZWxzZSB7CiAgcmV0dXJuIGNvbG9yQmxlbmQoTWF0aC5wb3cobmR3aSwwLjI1KSwgWzAsMV0sIFtbMSwxLDFdLFswLDAsMC44XV0pOwp9Cgo%3D){:target="_blank"}
66

77

88
## General description of the script
@@ -13,5 +13,11 @@ One is used to monitor changes in water content of leaves, using near-infrared (
1313

1414
Another is used to monitor changes related to water content in water bodies, using green and NIR wavelengths, defined by McFeeters (1996).
1515

16+
## Description of representative images
17+
18+
NDWI of Rome. Acquired on 8.10.2017.
19+
20+
![NDVI of Rome](fig/fig1.png)
21+
1622
## References
1723
Source: https://en.wikipedia.org/wiki/Normalized_difference_water_index

sentinel-2/ndwi/fig/fig1.png

2.86 MB
Loading

sentinel-2/poor_mans_atcor/README.md

+7
Original file line numberDiff line numberDiff line change
@@ -27,5 +27,12 @@ _Poor Man's Atmospheric Adjustment for a Pretty Glacier Picture_ (see <a href="h
2727

2828
The product produces natural color images using Sentinel-2 bands 4, 3 and 2. It performs a very basic linear atmospheric correction, and applies a curve to the color components to enhance details in the dark areas, while preserving contrast in very bright snow-covered slopes. It has been fine-tuned to use on the Sentinel-2 image of Monte Sarmiento in Tierra del Fuego taken 2016-05-05.
2929

30+
## Description of representative images
31+
32+
Color correction of Rome. Acquired on 8.10.2017.
33+
34+
![Color correction of Rome](fig/fig1.png)
35+
3036
## References
3137
- Sentinel Hub Blog, [Color Correction with Sentinel Hub](https://medium.com/p/d721e12a919).
38+
3.02 MB
Loading

sentinel-2/psri/README.md

+7
Original file line numberDiff line numberDiff line change
@@ -18,5 +18,12 @@ $$PSRI = \frac{B04-B02}{B06}.$$
1818

1919
It is used for studying vegetation; see [1] for details.
2020

21+
## Description of representative images
22+
23+
PSRI of Rome. Acquired on 8.10.2017.
24+
25+
![PSRI of Rome](fig/fig1.png)
26+
27+
2128
## References
2229
[1] Index DataBase, [index.de: PSRI](https://www.indexdatabase.de/db/i-single.php?id=69). Accessed on February 20th 2019.

sentinel-2/psri/fig/fig1.png

1.46 MB
Loading

sentinel-2/sipi1/README.md

+5-1
Original file line numberDiff line numberDiff line change
@@ -9,12 +9,16 @@
99
## Evaluate and visualize
1010
- [Sentinel Playground](https://apps.sentinel-hub.com/sentinel-playground/?source=S2&lat=43.514198796857976&lng=16.601028442382812&zoom=11&evalscripturl=https://raw.githubusercontent.com/sentinel-hub/custom-scripts/master/sentinel-2/sipi/script.js){:target="_blank"}
1111
- [EO Browser](http://apps.sentinel-hub.com/eo-browser/#lat=41.9&lng=12.5&zoom=10&datasource=Sentinel-2%20L1C&time=2017-10-08&preset=CUSTOM&layers=B01,B02,B03&evalscripturl=https://raw.githubusercontent.com/sentinel-hub/custom-scripts/master/sentinel-2/sipi/script.js){:target="_blank"}
12-
12+
When EO Browser loads, switch to **code view**, then check the **Use URL** checkbox and press **Refresh**.
1313

1414
## General description of the script
1515

1616
The SIPI index maximizes sensitivity to the ratio of bulk carotenoids to chlorophyll while minimizing the impact of the variable canopy structure. It is very useful in areas with high variability in the canopy structure, or leaf area index..
1717

1818
Values description: The range of a SIPI is from 0 to 2, where healthy green vegetation is from 0.8 to 1.8.
1919

20+
## Description of representative images
21+
22+
SIPI of Rome. Acquired on 8.10.2017.
2023

24+
![NDVI of Rome](fig/fig1.png)

sentinel-2/sipi1/fig/fig1.png

1.79 MB
Loading

sentinel-2/snow_classifier/README.md

+7-1
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111

1212
## Evaluate and visualize
1313
- [Sentinel Playground](https://apps.sentinel-hub.com/sentinel-playground/?source=S2&lat=41.9027835&lng=12.496365500000024&zoom=12&evalscripturl=https://raw.githubusercontent.com/sentinel-hub/customScripts/master/sentinel-2/snow_classifier/script.js){:target="_blank"}
14-
- [EO Browser](http://apps.sentinel-hub.com/eo-browser/#lat=41.9&lng=12.5&zoom=10&datasource=Sentinel-2%20L1C&time=2017-10-08&preset=CUSTOM&layers=B01,B02,B03&evalscripturl=https://raw.githubusercontent.com/sentinel-hub/customScripts/master/sentinel-2/snow_classifier/script.js){:target="_blank"}
14+
- [EO Browser](https://apps.sentinel-hub.com/eo-browser/?lat=46.35647&lng=13.47542&zoom=13&time=2019-10-26&preset=CUSTOM&datasource=Sentinel-2%20L1C&layers=B01,B02,B03&evalscript=ICB2YXIgTkRTSSA9IChCMDMgLSBCMTEpIC8gKEIwMyArIEIxMSk7CnZhciBORFZJID0gKEIwOCAtIEIwNCkgLyAoQjA4ICsgQjA0KTsKdmFyIGdhaW4gPSAyLjU7CgpmdW5jdGlvbiBzaShhKSB7CiAgICByZXR1cm4gKGE%2BPTAuNCkgPyAxIDogKE1hdGguYWJzKE5EVkkgLSAwLjEpIDw9IDAuMDI1ID8gMSA6IDApOwp9CgpmdW5jdGlvbiBicihhKSB7CiAgICByZXR1cm4gYT4wLjM7Cn0KICAgCnZhciB2ID0gc2koTkRTSSkgJiYgYnIoQjAzKTsKCnJldHVybiAodj09MSkgPyBbMS4wLDAuOCwwLjRdIDogW0IwNCwgQjAzLCBCMDJdLm1hcChhID0%2BIGdhaW4gKiBhKTs%3D){:target="_blank"}
1515

1616
## General description of the script
1717

@@ -28,6 +28,12 @@ Difference Vegetation Index (NDVI) value is close enough to 0.1.
2828

2929
This algorithm classifies pixels based on all three values. Different brightness and NDSI thresholds were tested and 0.3 and 0.4, respectively, proved to give the best results.
3030

31+
## Description of representative images
32+
33+
Snow classifier, Bovec, Slovenia. Acquired on 26.10.2019.
34+
35+
![snow classifier](fig/fig1.png)
36+
3137
## References
3238
[1] Olivier Hagolle, Mireille Huc, Camille Desjardins, Stefan Auer, & Rudolf Richter. (2017, December 7). MAJA Algorithm Theoretical Basis Document (Version 1.0). Zenodo. http://doi.org/10.5281/zenodo.1209633
3339

2.38 MB
Loading

sentinel-2/vegetation_condition_index/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -90,6 +90,12 @@ Example response:
9090
```
9191
</details>
9292

93+
## Description of representative images
94+
95+
Vegetation condition index of Rome. Acquired on 8.10.2017.
96+
97+
![Vegetation condition index of Rome](fig/fig1.png)
98+
9399
## References
94100

95101
[1] https://www.indexdatabase.de/db/i-single.php?id=249
Loading

0 commit comments

Comments
 (0)