Skip to content

Commit 32adac9

Browse files
committed
Adding the second batch of contest's scripts
1 parent 9f06f57 commit 32adac9

37 files changed

+561
-4
lines changed

README.md

Lines changed: 8 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -37,6 +37,9 @@ The Sentinel-1 imagery is provided by two polar-orbiting satellites, operating d
3737
- [SAR false color visualization](sentinel-1/sar_false_color_visualization)
3838
- [SAR false color visualization 2](sentinel-1/sar_false_color_visualization-2)
3939
- [SAR multi-temporal backscatter coefficient composite](sentinel-1/sar_multi-temporal_backscatter_coefficient_composite)
40+
41+
#### Other multi-temporal scripts
42+
- [soil_moisture_estimation](sentinel-1/soil_moisture_estimation)
4043

4144

4245
## <a name="sentinel-2"></a>Sentinel-2
@@ -74,7 +77,8 @@ Dedicated to supplying data for [Copernicus services](http://www.esa.int/Our_Act
7477
- [NDCI](sentinel-2/ndci) - normalized difference chlorophyll index
7578
- [NDSI](sentinel-2/ndsi) - normalised difference snow index
7679
- [PSSRB1](sentinel-2/pssrb1) - pigment specific simple ratio for chlorophyll b (800/650 )
77-
- [SAVI](sentinel-2/savi) - soil adjusted vegetation index
80+
- [SAVI](sentinel-2/savi) - soil adjusted vegetation index
81+
- [se2waq](sentinel-2/se2waq)
7882
- [SIPI1](sentinel-2/sipi1) - structure insensitive pigment index
7983
- [LAI](sentinel-2/lai) - Leaf Area Index
8084
- [Leaf chlorophyll content](sentinel-2/cab)
@@ -86,6 +90,7 @@ Dedicated to supplying data for [Copernicus services](http://www.esa.int/Our_Act
8690
- [Tonemapped Natural Color script](sentinel-2/tonemapped_natural_color)
8791
- [Vegetation condition index ](sentinel-2/vegetation_condition_index)
8892
- [Ulyssys Water Quality Viewer](sentinel-2/ulyssys_water_quality_viewer) - chlorophyll and suspended sediment for water quality visualization
93+
- [Water In Wetlands Index (WIW)](sentinel-2/wiw_s2_script)
8994

9095

9196
#### Cloud detection algorithms
@@ -109,6 +114,7 @@ Dedicated to supplying data for [Copernicus services](http://www.esa.int/Our_Act
109114
#### Land use/cover classification algorithms
110115
- [False Color Composite](sentinel-2/false_color_composite)
111116
- [Barren soil](sentinel-2/barren_soil)
117+
- [Land Use Visualization for Sentinel-2 Using Linear Discriminant Analysis Script](sentinel-2/land_use_with_linear_discriminant_analysis)
112118

113119
#### Agriculture and forestry algorithms
114120
- [NDVI anomaly detection](sentinel-2/ndvi_anomaly_detection)
@@ -169,6 +175,7 @@ The Landsat program is the longest running enterprise for acquisition of satelli
169175

170176
#### Other available scripts
171177
- [Land surface temperature (LST) mapping](landsat-8/land_surface_temperature_mapping)
178+
- [Water In Wetlands Index](landsat-8/wiw_L8_script)
172179

173180
## <a name="landsat-57"></a>Landsat 5 and 7
174181

landsat-8/wiw_L8_script/README.md

Lines changed: 61 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,61 @@
1+
# Water In Wetlands Index - Landsat-8 Version
2+
3+
<a href="#" id='togglescript'>Show</a> script or [download](wiw_L8_script.js){:target="_blank"} it.
4+
<div id='script_view' style="display:none">
5+
{% highlight javascript %}
6+
{% include_relative wiw_L8_script.js %}
7+
{% endhighlight %}
8+
</div>
9+
10+
## Evaluate and visualize
11+
- [EO Browser](https://apps.sentinel-hub.com/eo-browser/?lat=43.61719&lng=4.33574&zoom=13&time=2020-02-24&preset=CUSTOM&datasource=Landsat%208%20USGS&layers=B01,B02,B03&evalscript=Ly8gRGV0ZWN0aW5nIHRoZSBQcmVzZW5jZSBvZiBXYXRlciBpbiBXZXRsYW5kcyB3aXRoIExhbmRzYXQtOCBTYXRlbGxpdGUgKGFiYnJ2LiBXSVcpCi8vCi8vIEdlbmVyYWwgZm9ybXVsYTogSUYgQjA1PDAuMTczNSBBTkQgQjA3PDAuMTAzNSBUSEVOIFdhdGVyIEVMU0UgTm9XYXRlcgovLwovLyBVUkwgaHR0cHM6Ly93d3cuaW5kZXhkYXRhYmFzZS5kZS9kYi94eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4Ly8KCnJldHVybiBCMDU8MC4xNzM1JiZCMDc8MC4xMDM1P1s1MS8yNTUsNjgvMjU1LDE3MC8yNTVdOltCMDQqNSxCMDMqNSxCMDIqNV07CgovLyBjb2xvckJsZW5kIHdpbGwgcmV0dXJuIGEgYmx1ZSBjb2xvciB3aGVuIHN1cmZhY2Ugd2F0ZXIgaXMgZGV0ZWN0ZWQsIGFuZCBsaWdodGVuIHRvIGEgbmF0dXJhbCBjb2xvciB3aGVuIG5vIHdhdGVyIGlzIGRldGVjdGVk){:target="_blank"}
12+
13+
14+
## General description of the script
15+
16+
**Wetlands: vital and vanishing ecosystems**
17+
Wetlands are dynamic, productive ecosystems that hold a significant part of the worldís biodiversity. They also contribute to human wellbeing in multiple ways, further offering nature-based solutions to manmade problems. In addition to holding 40% of the worldís species while occupying only 3% of the Earth surface, wetlands act as Natureís kidney by provisioning and purifying water; they contribute to reducing the level of atmospheric greenhouse gases fueling global heating; they prevent soil erosion and flood damage by dispersing and absorbing excess water; along the coast they buffer the land from waves and wind, being the first line of defence against the encroaching salt waters; they provision food stock by offering sheltered spawning, breeding and foraging areas to various shellfish, fish and game species. Yet, over 50% of wetlands have been lost over the last 50 years, mostly to agricultural and urban development, with climate change becoming an additional pressure.
18+
19+
**WIW: A remote-sensing tool to monitor Water In Wetlands**
20+
Many wetlands are seasonal and their ability to provide people and planet with diverse critical services is tightly related to their inundation patterns. Against the urgent backdrop of a changing world and climate, we need to increase our capacity to routinely monitor key indicators of wetland health such as hydroperiod. A major shortcoming with current water indices is that they cannot detect water under vegetation cover and wetlands are often characterized by the presence of emergent plants of variable height and density (e.g. reed, bulrushes, cattails, Spartina, Salicornia, willow, etc.). To bridge this gap, we collected ground-truth data under various conditions of flooding and vegetation development at thousands of points in the Camargue wetland (RhÙne delta in southern France) and identified the reflectance values of the corresponding pixels from optical spectral bands of Landsat and Sentinel sensors. A data mining approach was used to identify the best match between ground-truth and optical-based data for predicting water presence/absence. The best classifier of water presence consisted of threshold values imposed to the near-infrared and shortwave infrared wavelengths, irrespective of the satellite sensor used:
21+
22+
Landsat 8 : WIW = NIR = 0.1735 and SWIR2 = 0.1035
23+
Landsat 5, 7 : WIW = NIR = 0.1558 and SWIR2 = 0.0871
24+
Sentinel 2 : WIW = NIR = 0.1804 and SWIR2 = 0.1131
25+
26+
Overall accuracy of the water maps built by applying the WIW ranged from 89% to 94% for both the training and validation samples. Sentinel 2 provided the highest performance with a kappa coefficient of 0.82 for both samples.
27+
28+
## Details of the script
29+
30+
**The WIW script**
31+
The script allows one to generate water maps using the Water In Wetlands logical rule by featuring water in blue and other landscape features in natural colors.
32+
33+
**Applicability**
34+
WIW is useful for mapping open-water areas and areas with water under vegetation cover.
35+
Use of WIW with Landsat sensors can be used to collect long-term data (back to 1984) for monitoring wetland evolution. Use of WIW with Sentinel-2 sensors can help track short-term changes in water areas relative to rainfalls or floods. Considering the high temporal resolution of Sentinel 2 (every 5 days), cumulative water maps built using WIW can further be used for detecting a wide range of wetlands which are either periodically or permanently inundated.
36+
37+
**False detection problems and limitations**
38+
Limitations are similar to those encountered with current indices for detecting surface waters: dark object (shadows) can be classified as water, whereas highly turbid water or those with strong waves causing foam at the surface can be misclassified as dry areas. These situations are, however, rarely encountered in seasonal shallow wetlands which are targeted by the WIW script.
39+
40+
## Authors of the script
41+
42+
WILLM Loïc, LEFEBVRE GaÎtan, DAVRANCHE AurÈlie, CAMPAGNA Julie, REDMOND Lauren, MERLE ClÈment, GUELMAMI Anis and POULIN Brigitte
43+
44+
## Description of representative images
45+
46+
Timelapse ChaSca: WIW timelapse at the largest reed marsh in southern France from July 2013 through June 2014 (monthly interval).
47+
![Timelapse ChaSca](fig/Timelapse_ChaSca_L8.gif)
48+
49+
## References
50+
51+
[1] Lefebvre G., Davranche A., Willm L., Campagna J., Redmond L., Merle C., Guelmami A., Poulin B. 2019. [Introducing WIW for Detecting the Presence of Water in Wetlands with Landsat and Sentinel Satellites. Remote Sensing 11(19):18.](https://sentinels.copernicus.eu/web/sentinel/news/-/article/copernicus-sentinel-2-helps-track-changes-in-seasonal-water-of-wetlands){:target="_blank"}
52+
[DOI](http://dx.doi.org/10.3390/rs11192210){:target="_blank"}
53+
54+
## Credits
55+
56+
[1] Lefebvre G., Davranche A., Willm L., Campagna J., Redmond L., Merle C., Guelmami A., Poulin B. 2019. [Introducing WIW for Detecting the Presence of Water in Wetlands with Landsat and Sentinel Satellites. Remote Sensing 11(19):18.](https://sentinels.copernicus.eu/web/sentinel/news/-/article/copernicus-sentinel-2-helps-track-changes-in-seasonal-water-of-wetlands){:target="_blank"}
57+
[DOI](http://dx.doi.org/10.3390/rs11192210){:target="_blank"}
58+
59+
## Acknowledgments
60+
61+
The WIW script was developed within the ECOPOTENTIAL project, a H2020 European project under grant agreement No 642088.
2.71 MB
Loading
Binary file not shown.
Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,9 @@
1+
// Detecting the Presence of Water in Wetlands with Landsat-8 Satellite (abbrv. WIW)
2+
//
3+
// General formula: IF B05<0.1735 AND B07<0.1035 THEN Water ELSE NoWater
4+
//
5+
// URL https://www.indexdatabase.de/db/xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx//
6+
7+
return B05<0.1735&&B07<0.1035?[51/255,68/255,170/255]:[B04*5,B03*5,B02*5];
8+
9+
// colorBlend will return a blue color when surface water is detected, and lighten to a natural color when no water is detected

sentinel-1/sar-ice/README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -81,9 +81,9 @@ In this recipe we look at the following features that can be captured with our c
8181

8282
See also the [supplementary material](supplementary_material.pdf) for details.
8383

84-
## Author of the script
84+
## Authors of the script
8585

86-
Martin Raspaud
86+
Martin Raspaud, Mikhail Itkin
8787

8888
## Description of representative images
8989

Lines changed: 57 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,57 @@
1+
# Soil Moisture Estimation Script
2+
3+
<a href="#" id='togglescript'>Show</a> script or [download](soil_moisture_estimation.js){:target="_blank"} it.
4+
<div id='script_view' style="display:none">
5+
{% highlight javascript %}
6+
{% include_relative soil_moisture_estimation.js %}
7+
{% endhighlight %}
8+
</div>
9+
10+
## Evaluate and visualize
11+
- [Sentinel Playground Temporal](https://apps.sentinel-hub.com/sentinel-playground-temporal/?source=S1-AWS-IW-VVVH&lat=49.58263077421254&lng=-97.78971236664802&zoom=11&preset=CUSTOM&layers=VV,VV,VV&maxcc=20&gain=1.0&gamma=1.0&time=2017-01-01%7C2019-10-31&atmFilter=&showDates=false&evalscript=LyoKClN1cmZhY2UgU29pbCBNb2lzdHVyZSAoU1NNKSByZXRyaWV2YWwgdXNpbmcgY2hhbmdlIGRldGVjdGlvbiBhcHByb2FjaC4KCkF1dGhvciBEZXRhaWxzOiAKTmFyYXlhbmEgUmFvIEIuCjIwNi1NUlNMYWIsIENTUkUsCklJVCBCb21iYXksIEluZGlhLgoKQSBkZXRhaWxlZCBleHBsYW5hdGlvbiBvZiB0aGUgaW1wbGVtZW50ZWQgYWxnb3JpdGhtIGNhbiBiZSBmb3VuZCBpbiB0aGUgZm9sbG93aW5nIGFydGljbGVzLgoKV2FnbmVyLCBXLiwgTGVtb2luZSwgRy4sIEJvcmdlYXVkLCBNLiBhbmQgUm90dCwgSC4sIDE5OTkuIApBIHN0dWR5IG9mIHZlZ2V0YXRpb24gY292ZXIgZWZmZWN0cyBvbiBFUlMgc2NhdHRlcm9tZXRlciBkYXRhLiAKSUVFRSBUcmFuc2FjdGlvbnMgb24gR2Vvc2NpZW5jZSBhbmQgUmVtb3RlIFNlbnNpbmcsIDM3KDIpLCBwcC45MzgtOTQ4LgoKQi4gQmF1ZXItTWFyc2NoYWxsaW5nZXIgZXQgYWwuLCAKIlRvd2FyZCBHbG9iYWwgU29pbCBNb2lzdHVyZSBNb25pdG9yaW5nIFdpdGggU2VudGluZWwtMTogSGFybmVzc2luZyBBc3NldHMgYW5kIE92ZXJjb21pbmcgT2JzdGFjbGVzLCIgCmluIElFRUUgVHJhbnNhY3Rpb25zIG9uIEdlb3NjaWVuY2UgYW5kIFJlbW90ZSBTZW5zaW5nLCB2b2wuIDU3LCBuby4gMSwgcHAuIDUyMC01MzksIEphbi4gMjAxOS4KCiovCgpmdW5jdGlvbiAgc2V0dXAgKGRzcykgCiAgewogICAgc2V0SW5wdXRDb21wb25lbnRzKFtkc3MuVlYsZHNzLlZIXSk7IC8vIHNlbGVjdGluZyB0aGUgZGF0YXNldHMKICAgIHNldE91dHB1dENvbXBvbmVudENvdW50KDMpOyAvLyBGb3IgUkdCIG91dHB1dCBubyBvZiBjaGFubmVscyA9MwogIH0KZnVuY3Rpb24gZmlsdGVyU2NlbmVzIChzY2VuZXMsIGlucHV0TWV0YWRhdGEpIAogIHsKICAgIHJldHVybiBzY2VuZXMuZmlsdGVyKGZ1bmN0aW9uIChzY2VuZSkgewogICAgLy8gQ29uc2lkZXJpbmcgMzYgbW9udGhzIGRhdGEgdG8gYXZvaWQgc2Vhc29uYWwgdmFyaWF0aW9ucyBpbiBtYXNraW5nCiAgICByZXR1cm4gc2NlbmUuZGF0ZS5nZXRUaW1lKCk%2BPShpbnB1dE1ldGFkYXRhLnRvLmdldFRpbWUoKS0zNiozMCoyNCozNjAwKjEwMDApIDsgIC8vIERhdGEgZnJvbSAzNiBtb250aHMgdG8gY3VycmVudCBkYXRlCiAgICB9KTsKICB9CgpmdW5jdGlvbiBldmFsdWF0ZVBpeGVsKHNhbXBsZXMsIHNjZW5lcykgCiAgeyAgCiAgICB2YXIgY291bnQgPSAwOwogICAgdmFyIE12ID0gMDsKICAgIHZhciBtYXggPSAwOwogICAgdmFyIG1pbiA9Mi4wOwogICAgdmFyIHN1bV9WViA9IDA7CgogICAgZm9yICh2YXIgaT0wO2k8c2FtcGxlcy5sZW5ndGgtMTtpKyspIAogICAgICB7CiAgICAgICAgICBtYXggPSBzYW1wbGVzW2ldLlZWID4gbWF4ID8gc2FtcGxlc1tpXS5WVjptYXg7IC8vIENhbGN1bGF0aW5nIGFsbCB0aW1lIG1heGltdW0tLVdldCBpbmRleCAKICAgICAgICAgIG1pbiA9IHNhbXBsZXNbaV0uVlYgPCBtaW4gPyBzYW1wbGVzW2ldLlZWOm1pbjsgLy8gQ2FsY3VsYXRpbmcgYWxsIHRpbWUgbWluaW11bS0tRHJ5IGluZGV4IAogICAgICAgICAgc3VtX1ZWICs9IHNhbXBsZXNbaV0uVlY7IAogICAgICAgICAgY291bnQrKzsKICAgICAgfQogICAgLy8gT3ZlcmFsbCByYW5nZSBvZiBpbnRlbnNpdHkgdmFsdWVzIEFub2xvZ291cyB0byAwLTEwMCUgc29pbCBtb2lzdHVyZSAKICAgIHZhciBzZW5zaXRpdml0eSAgPSBtYXgtbWluOyAKICAgIC8vIElmIG92ZXJhbGwgYXZlcmdlIGlzIG1vcmUgdGhhbiA2ZEIgaS5lLiwgSGlnaCBpbnRlbnNpdHkgYWx3YXlzIHVzdWFsbHkgdXJiYW4gYXJlYXMuCiAgICAvLyBHZW5lcmF0aW5nIHVyYmFuIGFyZWEgbWFzayB1c2luZyAtNmRCIHRocmVzaG9sZAogICAgdXJiYW5fbWFzayA9IDEwKk1hdGgubG9nMTAoc3VtX1ZWL2NvdW50KSA%2BIC02ID8gIDAgOiAxOyAKICAgIC8vIElmIG92ZXJhbGwgYXZlcmdlIGlzIGxlc3MgdGhhbiAxN2RCIGkuZS4sIGxvdyBpbnRlbnNpdHkgYWx3YXlzIHVzdWFsbHkgd2F0ZXIgYm9kaWVzLgogICAgLy8gR2VuZXJhdGluZyBwZXJtYW5lbnQgd2F0ZXIgYm9keSBtYXNrIHVzaW5nIC0xN2RCIHRocmVzaG9sZAogICAgd2F0ZXJfbWFzayA9IDEwKk1hdGgubG9nMTAoc3VtX1ZWL2NvdW50KSA8IC0xNyA%2FICAwIDogMTsgCiAgICAvLyBBc3N1bWluZyBjaGFuZ2UgaW4gYmNrc2NhdHRlciBpbnRlbnNpdHkgb25seSBiZWNhdXNlIG9mIGNoYW5nZSBpbiBzb2lsIG1vaXN0dXJlLgogICAgTXYgPSAoKHNhbXBsZXNbMF0uVlYpIC0gbWluKS8oc2Vuc2l0aXZpdHkpOwogICAgTXYgPSBNdip3YXRlcl9tYXNrKnVyYmFuX21hc2s7Ly8gQXBwbHlpbmcgdXJiYW4gYW5kIHBlcm1hbmVudCB3YXRlciBib2R5IG1hc2sKCiAgICAvKgoKICAgIEFzc2lnbmluZyBjb2xvcm1hcCBmb3IgZW5oYW5jZWQgdmlzdWFsaXNhdGlvbgoKICAgICovCiAgICB2YXIgdiA9IE12OwogICAgdmFyIHZtaW4gPSAwOwogICAgdmFyIHZtYXggPSAwLjY7CiAgICB2YXIgZGlmZnYgPSB2bWF4IC0gdm1pbjsKICAgIAogICAgdmFyIHIgPSAwLjA7CiAgICB2YXIgZyA9IDAuMDsKICAgIHZhciBiID0gMC4wOwoKICAgIGlmICh2IDwgdm1pbil7CiAgICAgIHYgPSB2bWluOwogICAgfQogICAgaWYgKHYgPiB2bWF4KXsKICAgICAgdiA9IHZtYXg7CiAgICB9CiAgICAvL1RocmVzaG9sZCB2YWx1ZXMgZm9yIGNvbG9yTWFwCiAgICB2YXIgVDEgPSAwLjE7CiAgICB2YXIgVDIgPSAwLjM7CiAgICB2YXIgVDMgPSAwLjQ7CiAgICB2YXIgVDQgPSAwLjU7CiAgICAKICAgIHZhciBUaHJlc2hfMSA9ICh2bWluICsgVDEgKiBkaWZmdik7CiAgICB2YXIgVGhyZXNoXzIgPSAodm1pbiArIFQyICogZGlmZnYpOwogICAgdmFyIFRocmVzaF8zID0gKHZtaW4gKyBUMyAqIGRpZmZ2KTsKICAgIHZhciBUaHJlc2hfNCA9ICh2bWluICsgVDQgKiBkaWZmdik7CgogICAgaWYgKHYgPD0gMCkgCiAgICB7IAogICAgICByPTE7CiAgICAgIGc9MTsKICAgICAgYj0xOwogICAgfQogICAgZWxzZSBpZiAodiA8IFRocmVzaF8xKSAgIHsgIHIgPSAwLjUgKyAgKHYgLSB2bWluKSAvIChUaHJlc2hfMSAtIHZtaW4pIC8gMjsgfSAKICAgIGVsc2UgaWYgKHYgPCBUaHJlc2hfMikKICAgIHsKICAgICAgIHIgPSAxOwogICAgICAgZyA9ICh2IC0gVGhyZXNoXzEpIC8gKFRocmVzaF8yIC0gVGhyZXNoXzEpOwogICAgICAgYiA9IDA7CiAgICB9IAogICAgZWxzZSBpZiAodiA8IFRocmVzaF8zKSAKICAgIHsKICAgICAgIHIgPSAxICsgKFRocmVzaF8yIC0gdikgLyAoVGhyZXNoXzMgLSBUaHJlc2hfMik7CiAgICAgICBnID0gMTsKICAgICAgIGIgPSAodiAtIFRocmVzaF8yKSAvIChUaHJlc2hfMyAtIFRocmVzaF8yKTsKICAgIH0gCiAgICBlbHNlIGlmICh2IDwgVGhyZXNoXzQpCiAgICAgewogICAgICAgciA9IDA7CiAgICAgICBnID0gMSArIChUaHJlc2hfMyAtIHYpIC8gKFRocmVzaF80IC0gVGhyZXNoXzMpOwogICAgICAgYiA9IDE7CiAgICB9IAogICAgZWxzZSB7ICBiID0gMS4wICsgKFRocmVzaF80IC0gdikgLyAodm1heCAtIFRocmVzaF80KSAvIDI7ICB9CiAgICAgcmV0dXJuIFtyLCBnLCBiXTsKCiAgfQo%3D&temporal=true){:target="_blank"}
12+
13+
14+
## General description of the script
15+
16+
Script estimates surface soil moisture using change detection algorithm (TU Wien Change Detection model). The algorithm relates the change in backscatter intensity to the change in moisture. This relative change in soil moisture converted to absolute soil moisture by attributing the lowest and highest backscatter values to 0% and 100 % soil moisture respectively for a given pixel. To avoid the effect of outliers in caculating sensitivity of back scatter intensity (max-min), extreme 10% range on both sides was trimmed. This script produces soil moisture ranges from 0 to 60% with colour representation of red being 0 and blue as 60%. White colour represents the masked out area. Permanent water bodies and urban areas are masked out using backscatter intensity thresholds to minimise the number of false pixels. This masking approach is robust since it utilises long time series data.
17+
18+
## Details of the script
19+
20+
The script to estimate surface soil moisture using change detection approach can be applied globally. Since we are considering 3-year data in calculating the sensitivity of backscatter fluctuations, it is resistant to seasonal fluctuations. It is capable of masking urban and permanent water bodies to reduce false results. The script can produce reasonably good results in flat and moderate slope terrains. But in high slope regions, the incidence angle effect on backscatter intensity affect the results. Rough water surfaces result in false results, e.g. oceans, but not always. Few developing urban areas may also produce false results.
21+
22+
For more details on the script see [supplementary material](supplementary_material.pdf).
23+
24+
## Author of the script
25+
26+
Narayana Rao Bhogapurapu
27+
28+
## Description of representative images
29+
30+
Resulted soil moisture is applied with jet color map for better interpretation. Red color represents low soil moisture (dry soil-0%) whereas blue represents high soil moisture (wet soil-60%). Permanent water bodies and built-up areas are masked out with white color.
31+
32+
Malinong, Australia
33+
![The script example 1](fig/Malinong_Australia.jpg)
34+
35+
Manitoba, Canada
36+
![The script example 2](fig/Manitoba_Canada.jpg)
37+
38+
Marrakech, Marocco
39+
![The script example 3](fig/Marrakech_Morocco.jpg)
40+
41+
Sevilla, Spain
42+
![The script example 3](fig/Sevilla_Spain.jpg)
43+
44+
Vijayawada, India
45+
![The script example 3](fig/Vijayawada_India.jpg)
46+
47+
## References
48+
49+
[1] Wagner, W., Lemoine, G., Borgeaud, M. and Rott, H., 1999. A study of vegetation cover effects on ERS scatterometer data. IEEE Transactions on Geoscience and Remote Sensing, 37(2), pp.938-948.
50+
51+
[2] B. Bauer-Marschallinger et al., "Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles," in IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 1, pp. 520-539, Jan. 2019.
52+
53+
## Credits
54+
55+
- Wagner, W., Lemoine, G., Borgeaud, M. and Rott, H., 1999. A study of vegetation cover effects on ERS scatterometer data. IEEE Transactions on Geoscience and Remote Sensing, 37(2), pp.938-948.
56+
57+
- B. Bauer-Marschallinger et al., "Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles," in IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 1, pp. 520-539, Jan. 2019.
353 KB
Loading
355 KB
Loading
515 KB
Loading

0 commit comments

Comments
 (0)