This repository is currently being migrated. It's locked while the migration is in progress.
forked from PetteriAimonen/libfixmatrix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fixarray.c
215 lines (177 loc) · 4.71 KB
/
fixarray.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#include "fixarray.h"
#include <string.h> /* For memcpy() */
#ifdef FIXMATH_NO_64BIT
// Calculates the dotproduct of two vectors of size n.
// If overflow happens, sets flag in errors
fix16_t fa16_dot(const fix16_t *a, uint_fast8_t a_stride,
const fix16_t *b, uint_fast8_t b_stride,
uint_fast8_t n)
{
fix16_t sum = 0;
while (n--)
{
// Compute result
if (*a != 0 && *b != 0)
{
fix16_t product = fix16_mul(*a, *b);
sum = fix16_add(sum, product);
if (sum == fix16_overflow || product == fix16_overflow)
return fix16_overflow;
}
// Go to next item
a += a_stride;
b += b_stride;
}
return sum;
}
#else
// Because dotproduct() is the hotspot of matrix multiplication,
// it has a specialized 64-bit routine in addition to the normal
// fix16_mul()-based one. This is especially efficient on ARM processors
// which have SMLAL instruction.
fix16_t fa16_dot(const fix16_t *a, uint_fast8_t a_stride,
const fix16_t *b, uint_fast8_t b_stride,
uint_fast8_t n)
{
int64_t sum = 0;
while (n--)
{
if (*a != 0 && *b != 0)
{
sum += (int64_t)(*a) * (*b);
}
// Go to next item
a += a_stride;
b += b_stride;
}
// The upper 17 bits should all be the same (the sign).
uint32_t upper = sum >> 47;
if (sum < 0)
{
upper = ~upper;
#ifndef FIXMATH_NO_ROUNDING
// This adjustment is required in order to round -1/2 correctly
sum--;
#endif
}
#ifndef FIXMATH_NO_OVERFLOW
if (upper)
return fix16_overflow;
#endif
fix16_t result = sum >> 16;
#ifndef FIXMATH_NO_ROUNDING
result += (sum & 0x8000) >> 15;
#endif
return result;
}
#endif
#ifdef __GNUC__
// Count leading zeros, using processor-specific instruction if available.
#define clz(x) (__builtin_clzl(x) - (8 * sizeof(long) - 32))
#else
static uint8_t clz(uint32_t x)
{
uint8_t result = 0;
if (x == 0) return 32;
while (!(x & 0xF0000000)) { result += 4; x <<= 4; }
while (!(x & 0x80000000)) { result += 1; x <<= 1; }
return result;
}
#endif
static fix16_t scale_value(fix16_t value, int_fast8_t scale)
{
if (scale > 0)
{
fix16_t temp = value << scale;
if (temp >> scale != value)
return fix16_overflow;
else
return temp;
}
else if (scale < 0)
{
return value >> -scale;
}
else
{
return value;
}
}
#ifndef FIXMATH_NO_64BIT
// Calculates the norm of a vector
fix16_t fa16_norm(const fix16_t *a, uint_fast8_t a_stride, uint_fast8_t n)
{
int64_t sum = 0;
while (n--)
{
if (*a != 0)
{
sum += (int64_t)(*a) * (*a);
}
a += a_stride;
}
int_fast8_t scale = 0;
uint32_t highpart = (uint32_t)(sum >> 32);
uint32_t lowpart = (uint32_t)sum;
if (highpart)
scale = 33 - clz(highpart);
else if (lowpart & 0x80000000)
scale = 1;
if (scale & 1) scale++;
fix16_t result = fix16_sqrt((uint32_t)(sum >> scale));
result = scale_value(result, scale / 2 - 8);
return result;
}
#else
static uint_fast8_t ilog2(uint_fast8_t v)
{
uint_fast8_t result = 0;
if (v & 0xF0) { result += 4; v >>= 4; }
while (v) { result++; v >>= 1; }
return result;
}
fix16_t fa16_norm(const fix16_t *a, uint_fast8_t a_stride, uint_fast8_t n)
{
fix16_t sum = 0;
fix16_t max = 0;
// Calculate inclusive OR of all values to find out the maximum.
{
uint_fast8_t i;
const fix16_t *p = a;
for (i = 0; i < n; i++, p += a_stride)
{
max |= fix16_abs(*p);
}
}
// To avoid overflows, the values before squaring can be max 128.0,
// i.e. v & 0xFF800000 must be 0. Also, to avoid overflow in sum,
// we need additional log2(n) bits of space.
int_fast8_t scale = clz(max) - 9 - ilog2(n) / 2;
while (n--)
{
fix16_t val = scale_value(*a, scale);
fix16_t product = fix16_mul(val, val);
sum = fix16_add(sum, product);
a += a_stride;
}
if (sum == fix16_overflow)
return sum;
fix16_t result = fix16_sqrt(sum);
return scale_value(result, -scale);
}
#endif
void fa16_unalias(void *dest, void **a, void **b, void *tmp, unsigned size)
{
if (dest == *a)
{
memcpy(tmp, *a, size);
*a = tmp;
if (dest == *b)
*b = tmp;
}
else if (dest == *b)
{
memcpy(tmp, *b, size);
*b = tmp;
}
}