-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
285 lines (231 loc) · 8.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import math
import os
import sys
import gym
import imageio
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pddlgym
import pulp
import sspde.argparsing as argparsing
import sspde.mdp.gubs as gubs
import sspde.mdp.mcmp as mcmp
import sspde.pddl as pddl
import sspde.rendering as rendering
from datetime import datetime
from sspde.mdp.general import build_mdp_graph, create_cost_fn, create_pi_func
from sspde.mdp.vi import get_succ_states, vi
#matplotlib.use('agg')
sys.setrecursionlimit(5000)
np.random.seed(42)
def run_episode(pi,
env,
n_steps=100,
render_and_save=False,
output_dir=".",
print_history=False):
obs, _ = env.reset()
# Create folder to save images
if render_and_save:
output_outdir = args.output_dir
domain_name = env.domain.domain_name
problem_name = domain_name + str(problem_index)
output_dir = os.path.join(output_outdir, domain_name, problem_name,
f"{str(datetime.now().timestamp())}")
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
if render_and_save:
img = env.render()
imageio.imsave(os.path.join(output_dir, "frame1.png"), img)
cum_reward = 0
for i in range(1, n_steps + 1):
old_obs = obs
obs, reward, done, _ = env.step(pi(obs))
cum_reward += reward
if print_history:
print(pi(old_obs), reward)
if render_and_save:
img = env.render()
imageio.imsave(os.path.join(output_dir, f"frame{i + 1}.png"), img)
if done:
break
return i, cum_reward
args = argparsing.parse_args()
env = gym.make(args.env)
problem_index = args.problem_index
env.fix_problem_index(problem_index)
problem = env.problems[problem_index]
goal = problem.goal
prob_objects = frozenset(problem.objects)
obs, _ = env.reset()
A = list(sorted(env.action_space.all_ground_literals(obs, valid_only=False)))
print(' calculating list of states...')
has_penalty = args.vi_mode == "penalty"
mdp_graph = build_mdp_graph(obs, A, env, problem_index, penalty=has_penalty)
S = list(sorted([s for s in mdp_graph]))
print('Number of states:', len(S))
if args.vi_mode == "discounted":
param = "gamma"
elif args.vi_mode == "penalty":
param = "penalty"
param_vals = [getattr(args, param)]
succ_states = get_succ_states(args.vi_mode, A, mdp_graph)
if args.algorithm == "vi":
V_i = {s: i for i, s in enumerate(S)}
G_i = [V_i[s] for s in V_i if mdp_graph[s]['goal']]
print('obtaining optimal policy')
n_vals = 20
if args.batch:
init_val = args.init_param_val
n_vals = args.batch_size
if args.vi_mode == "discounted":
param_vals = np.linspace(init_val, args.gamma, n_vals)
elif args.vi_mode == "penalty":
param_vals = np.linspace(init_val, args.penalty, n_vals)
kwargs_default = {
"mode": args.vi_mode,
"gamma": args.gamma,
"penalty": args.penalty,
}
if args.batch:
kwargs_list = [{
**kwargs_default,
**{
param: val
}
} for val in param_vals]
else:
kwargs_list = [kwargs_default]
print(kwargs_list)
reses = []
for kwargs in kwargs_list:
print(f"running for param val {param}={kwargs[param]}:")
V, pi, P = vi(S, succ_states, A, V_i, G_i, goal, env, args.epsilon,
mdp_graph, **kwargs)
pi_func = create_pi_func(pi, V_i)
reses.append((V, pi_func, P))
print("Value at initial state:", V[V_i[obs]])
print("Probability to goal at initial state:", P[V_i[obs]])
print("Best action at initial state:", pi[V_i[obs]])
elif args.algorithm == "mcmp":
# Initialize variables
variables = []
variable_map = {}
for i, s in enumerate(S):
for a in A:
s_id_ = rendering.get_state_id(env, s)
s_id = s_id_ if s_id_ != "" else i
var = pulp.LpVariable(name=f"x_({s_id}-{a})", lowBound=0)
variables.append(var)
variable_map[(s, a)] = var
in_flow = mcmp.get_in_flow(variable_map, mdp_graph)
out_flow = mcmp.get_out_flow(variable_map, mdp_graph)
S_i = {s: i for i, s in enumerate(S)}
p_max, model_prob = mcmp.maxprob_lp(obs, S_i, in_flow, out_flow, env,
mdp_graph)
#p_max *= 0.9
mcmp_cost_fn = create_cost_fn(mdp_graph, False)
mincost, model_cost = mcmp.mcmp(obs, S_i, variable_map, in_flow, out_flow,
p_max, mcmp_cost_fn, env, mdp_graph)
# p_vals = np.linspace(args.init_param_val, p_max, args.batch_size)
# reses = []
# for p in p_vals:
# print(f"running for param val p_max={p}:")
# mincost, model_cost = mcmp.mcmp(obs,
# S_i,
# variable_map,
# in_flow,
# out_flow,
# p,
# mcmp_cost_fn,
# env,
# mdp_graph,
# log_solver=False)
# pi_func = mcmp.create_pi_func(variable_map, A)
# mcmp.print_model_status(model_cost)
# reses.append((mincost, pi_func, p))
# print("Value at initial state:", mincost)
# print("Probability to goal at initial state:", p)
# print("Best action at initial state:", pi_func(obs))
# print()
#print("Value at initial state:", mincost)
#print("Probability to goal at initial state:", p_max)
print("s0:", rendering.get_state_id(env, obs))
#print("s0:", obs)
def pi_func(s):
best = None
max_val = -math.inf
for a in A:
if (val_a := variable_map[s, a].value()) > max_val:
max_val = val_a
best = a
return best
lamb = args.lamb
k_g = args.k_g
def u(c):
return np.exp(c * lamb)
vals = []
stds = []
reses_pi = [pi_func for (_, pi_func, p_max) in reses]
for i, (V, pi_func, p_max) in enumerate(reses):
param_cost_fn = create_cost_fn(mdp_graph, has_penalty, param_vals[i])
v = gubs.eval_policy(obs,
succ_states,
pi_func,
param_cost_fn,
p_max,
lamb,
k_g,
args.epsilon,
mdp_graph,
env,
V_i=V_i)
vals.append(v)
print(
f"Evaluated value of the optimal policy at s0 under the eGUBS criterion with param val = {param_vals[i]}:",
v)
print()
means = np.array(vals)
stds = np.array(stds)
plt.plot(param_vals, means)
if len(stds) > 0:
plt.fill_between(param_vals, means - stds, means + stds, alpha=0.5)
plt.show()
n_episodes = 1000
print("Optimal action at initial state:", pi_func(obs))
plot = False
if args.plot_stats:
print('running episodes with optimal policy')
steps1 = []
rewards1 = []
for i in range(n_episodes):
n_steps, reward = run_episode(pi_func, env)
steps1.append(n_steps)
rewards1.append(reward)
print('running episodes with random policy')
steps2 = []
rewards2 = []
for i in range(n_episodes):
n_steps, reward = run_episode(lambda s: env.action_space.sample(s),
env)
steps2.append(n_steps)
rewards2.append(reward)
rewards2 = np.array(rewards2)
plt.title('Reward')
plt.plot(range(len(rewards1)), np.cumsum(rewards1), label="optimal")
plt.plot(range(len(rewards1)), np.cumsum(rewards2), label="random")
plt.legend()
plt.figure()
plt.title('steps')
plt.plot(range(len(steps1)), np.cumsum(steps1), label="optimal")
plt.plot(range(len(steps1)), np.cumsum(steps2), label="random")
plt.legend()
plt.show()
if args.simulate:
_, goal = run_episode(pi_func,
env,
n_steps=50,
render_and_save=args.render_and_save,
output_dir=args.output_dir,
print_history=args.print_sim_history)