-
Notifications
You must be signed in to change notification settings - Fork 72
/
distributions.py
233 lines (183 loc) · 7.35 KB
/
distributions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.distributions import Beta, Normal
from hparams import hparams as hp
def sample_from_beta_dist(y_hat):
"""
y_hat (batch_size x seq_len x 2):
"""
# take exponentional to ensure positive
loc_y = y_hat.exp()
alpha = loc_y[:,:,0].unsqueeze(-1)
beta = loc_y[:,:,1].unsqueeze(-1)
dist = Beta(alpha, beta)
sample = dist.sample()
# rescale sample from [0,1] to [-1, 1]
sample = 2.0*sample-1.0
return sample
def beta_mle_loss(y_hat, y, reduce=True):
"""y_hat (batch_size x seq_len x 2)
y (batch_size x seq_len x 1)
"""
# take exponentional to ensure positive
loc_y = y_hat.exp()
alpha = loc_y[:,:,0].unsqueeze(-1)
beta = loc_y[:,:,1].unsqueeze(-1)
dist = Beta(alpha, beta)
# rescale y to be between
y = (y + 1.0)/2.0
# note that we will get inf loss if y == 0 or 1.0 exactly, so we will clip it slightly just in case
y = torch.clamp(y, 1e-5, 0.99999)
# compute logprob
loss = -dist.log_prob(y).squeeze(-1)
if reduce:
return loss.mean()
else:
return loss
def log_sum_exp(x):
""" numerically stable log_sum_exp implementation that prevents overflow """
# TF ordering
axis = len(x.size()) - 1
m, _ = torch.max(x, dim=axis)
m2, _ = torch.max(x, dim=axis, keepdim=True)
return m + torch.log(torch.sum(torch.exp(x - m2), dim=axis))
def discretized_mix_logistic_loss(y_hat, y, num_classes=256,
log_scale_min=hp.log_scale_min, reduce=True):
"""Discretized mixture of logistic distributions loss
Note that it is assumed that input is scaled to [-1, 1].
Args:
y_hat (Tensor): Predicted output (B x T x C)
y (Tensor): Target (B x T x 1).
num_classes (int): Number of classes
log_scale_min (float): Log scale minimum value
reduce (bool): If True, the losses are averaged or summed for each
minibatch.
Returns
Tensor: loss
"""
y_hat = y_hat.permute(0,2,1)
assert y_hat.dim() == 3
assert y_hat.size(1) % 3 == 0
nr_mix = y_hat.size(1) // 3
# (B x T x C)
y_hat = y_hat.transpose(1, 2)
# unpack parameters. (B, T, num_mixtures) x 3
logit_probs = y_hat[:, :, :nr_mix]
means = y_hat[:, :, nr_mix:2 * nr_mix]
log_scales = torch.clamp(y_hat[:, :, 2 * nr_mix:3 * nr_mix], min=log_scale_min)
# B x T x 1 -> B x T x num_mixtures
y = y.expand_as(means)
centered_y = y - means
inv_stdv = torch.exp(-log_scales)
plus_in = inv_stdv * (centered_y + 1. / (num_classes - 1))
cdf_plus = torch.sigmoid(plus_in)
min_in = inv_stdv * (centered_y - 1. / (num_classes - 1))
cdf_min = torch.sigmoid(min_in)
# log probability for edge case of 0 (before scaling)
# equivalent: torch.log(F.sigmoid(plus_in))
log_cdf_plus = plus_in - F.softplus(plus_in)
# log probability for edge case of 255 (before scaling)
# equivalent: (1 - F.sigmoid(min_in)).log()
log_one_minus_cdf_min = -F.softplus(min_in)
# probability for all other cases
cdf_delta = cdf_plus - cdf_min
mid_in = inv_stdv * centered_y
# log probability in the center of the bin, to be used in extreme cases
# (not actually used in our code)
log_pdf_mid = mid_in - log_scales - 2. * F.softplus(mid_in)
# tf equivalent
"""
log_probs = tf.where(x < -0.999, log_cdf_plus,
tf.where(x > 0.999, log_one_minus_cdf_min,
tf.where(cdf_delta > 1e-5,
tf.log(tf.maximum(cdf_delta, 1e-12)),
log_pdf_mid - np.log(127.5))))
"""
# TODO: cdf_delta <= 1e-5 actually can happen. How can we choose the value
# for num_classes=65536 case? 1e-7? not sure..
inner_inner_cond = (cdf_delta > 1e-5).float()
inner_inner_out = inner_inner_cond * \
torch.log(torch.clamp(cdf_delta, min=1e-12)) + \
(1. - inner_inner_cond) * (log_pdf_mid - np.log((num_classes - 1) / 2))
inner_cond = (y > 0.999).float()
inner_out = inner_cond * log_one_minus_cdf_min + (1. - inner_cond) * inner_inner_out
cond = (y < -0.999).float()
log_probs = cond * log_cdf_plus + (1. - cond) * inner_out
log_probs = log_probs + F.log_softmax(logit_probs, -1)
if reduce:
return -torch.sum(log_sum_exp(log_probs))
else:
return -log_sum_exp(log_probs).unsqueeze(-1)
def to_one_hot(tensor, n, fill_with=1.):
# we perform one hot encore with respect to the last axis
one_hot = torch.FloatTensor(tensor.size() + (n,)).zero_()
if tensor.is_cuda:
one_hot = one_hot.cuda()
one_hot.scatter_(len(tensor.size()), tensor.unsqueeze(-1), fill_with)
return one_hot
def sample_from_discretized_mix_logistic(y, log_scale_min=hp.log_scale_min):
"""
Sample from discretized mixture of logistic distributions
Args:
y (Tensor): B x C x T
log_scale_min (float): Log scale minimum value
Returns:
Tensor: sample in range of [-1, 1].
"""
assert y.size(1) % 3 == 0
nr_mix = y.size(1) // 3
# B x T x C
y = y.transpose(1, 2)
logit_probs = y[:, :, :nr_mix]
# sample mixture indicator from softmax
temp = logit_probs.data.new(logit_probs.size()).uniform_(1e-5, 1.0 - 1e-5)
temp = logit_probs.data - torch.log(- torch.log(temp))
_, argmax = temp.max(dim=-1)
# (B, T) -> (B, T, nr_mix)
one_hot = to_one_hot(argmax, nr_mix)
# select logistic parameters
means = torch.sum(y[:, :, nr_mix:2 * nr_mix] * one_hot, dim=-1)
log_scales = torch.clamp(torch.sum(
y[:, :, 2 * nr_mix:3 * nr_mix] * one_hot, dim=-1), min=log_scale_min)
# sample from logistic & clip to interval
# we don't actually round to the nearest 8bit value when sampling
u = means.data.new(means.size()).uniform_(1e-5, 1.0 - 1e-5)
x = means + torch.exp(log_scales) * (torch.log(u) - torch.log(1. - u))
x = torch.clamp(torch.clamp(x, min=-1.), max=1.)
return x
# add gaussian from clarinet implementation:https://raw.githubusercontent.com/ksw0306/ClariNet/master/loss.py
def gaussian_loss(y_hat, y, log_std_min=-7.0, reduce=True):
"""y_hat (batch_size x seq_len x 2)
y (batch_size x seq_len x 1)
"""
assert y_hat.dim() == 3
assert y_hat.size(2) == 2
mean = y_hat[:, :, :1]
log_std = torch.clamp(y_hat[:, :, 1:], min=log_std_min)
log_probs = -0.5 * (- math.log(2.0 * math.pi) - 2. * log_std - torch.pow(y - mean, 2) * torch.exp((-2.0 * log_std)))
if reduce:
return log_probs.squeeze().mean()
else:
return log_probs.squeeze()
def sample_from_gaussian(y_hat, log_std_min=-7.0, scale_factor=1.):
"""y_hat (batch_size x seq_len x 2)
y (batch_size x seq_len x 1)
"""
assert y_hat.size(2) == 2
mean = y_hat[:, :, :1]
log_std = torch.clamp(y_hat[:, :, 1:], min=log_std_min)
dist = Normal(mean, torch.exp(log_std))
sample = dist.sample()
sample = torch.clamp(torch.clamp(sample, min=-scale_factor), max=scale_factor)
del dist
return sample
def test_gaussian():
y_hat = torch.rand(16, 120, 2)
y_true = torch.rand(16, 120, 1)
out = sample_from_gaussian(y_hat)
loss = gaussian_loss(y_hat, y_true)
loss_mean = loss.mean()
print(out.shape, loss.shape, loss_mean.item())