-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathrun.py
471 lines (404 loc) · 21.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import openai
import ai21
import re
import time
import json
import sys
import copy
import random
import numpy as np
from tqdm import tqdm
from pprint import pprint
from agent import (load_initial_instructions, involve_moderator, parse_final_price,
BuyerAgent, SellerAgent, ModeratorAgent, SellerCriticAgent, BuyerCriticAgent)
from utils import *
CONST_CRITIC_PATH = "lib_prompt/constant_feedback.txt"
HUMAN_CRITIC_PATH = "lib_prompt/human_feedback_seller.txt"
import argparse
def define_arguments():
parser = argparse.ArgumentParser()
# seller arguments
parser.add_argument('--seller_engine', type=str, default="gpt-3.5-turbo")
parser.add_argument('--seller_instruction', type=str, default="seller")
parser.add_argument('--seller_critic_engine', type=str, default="gpt-3.5-turbo")
parser.add_argument('--seller_critic_instruction', type=str, default="seller_critic")
# buyer arguments
parser.add_argument('--buyer_engine', type=str, default="gpt-3.5-turbo")
parser.add_argument('--buyer_instruction', type=str, default="buyer",
help="[buyer, buyer_no_initial_price]")
parser.add_argument('--buyer_critic_engine', type=str, default="gpt-3.5-turbo")
parser.add_argument('--buyer_critic_instruction', type=str, default="buyer_critic",
help="[buyer_critic, buyer_critic_no_initial_price]")
# moderator arguments
parser.add_argument('--moderator_instruction', type=str, default="moderator_buyer",
help="[moderator_buyer, moderator_seller, moderator_buyer_reason_first]")
parser.add_argument('--moderator_engine', type=str, default="gpt-3.5-turbo")
parser.add_argument('--moderator_trace_n_history', type=int, default=5,
help="how long the moderator trace history")
# api keys
parser.add_argument('--api_key', type=str, default=None, help='openai api key')
parser.add_argument('--anthropic_api_key', type=str, default=None, help='anthropic api key')
parser.add_argument('--ai21_api_key', type=str, default=None, help='ai21 api key')
parser.add_argument('--cohere_api_key', type=str, default=None, help='cohere api key')
# game arguments
parser.add_argument('--game_type', type=str, default=None,
help='[criticize_seller, criticize_buyer, seller_compare_feedback]')
parser.add_argument('--n_exp', type=int, default=1,
help='number of experiments')
parser.add_argument('--n_round', type=int, default=10,
help='number of rounds')
parser.add_argument('--n_rollout', type=int, default=3,
help='number of rollout')
parser.add_argument('--cost_price', type=int, default=8,
help='Cost of the baloon')
parser.add_argument('--seller_init_price', type=int, default=20,
help='initial seller price')
parser.add_argument('--buyer_init_price', type=int, default=10,
help='initial buyer price')
parser.add_argument('--verbose', type=int, default=1, help="0: not logger.write, 1: logger.write")
parser.add_argument('--output_path', type=str, default="./outputs/",
help='path to save the output')
parser.add_argument('--ver', type=str, default="test",
help='version to record the game')
parser.add_argument('--game_version', type=str, default="test",
help='version plus arguments')
# parse and set arguments
args = parser.parse_args()
openai.api_key = args.api_key
ai21.api_key = args.ai21_api_key
return args
def get_engine_and_api_key(agent_type, engine_name, args):
"""Get engine for players and critic
agent_type: [seller, buyer, seller_critic, buyer_critic, moderator]
engine_name: [gpt-3.5-turbo, gpt-4, claude-v1.0, claude-v1.3, claude-instant-v1.0]
"""
engine_map = { "seller": SellerAgent,
"buyer": BuyerAgent,
"seller_critic": SellerCriticAgent,
"buyer_critic": BuyerCriticAgent,
"moderator": ModeratorAgent
}
if("gpt" in engine_name):
api_key = args.api_key
elif("claude" in engine_name):
api_key = args.anthropic_api_key
elif("j2" in engine_name):
api_key = args.ai21_api_key
elif("cohere" in engine_name):
api_key = args.cohere_api_key
else:
raise ValueError("engine name %s not found" % engine_name)
engine_class = engine_map[agent_type]
return engine_class, api_key
def run(buyer, seller, moderator,
n_round=10, who_is_first="seller", no_deal_thres=10):
"""Run single game.
"""
if(who_is_first == "buyer"):
seller_run = seller.last_response
buyer_run = buyer.call(seller_run)
logger.write(' seller: %s' % seller.last_response)
logger.write(' buyer: %s' % buyer.last_response)
logger.write('---- start bargaining ----')
buyer_run = buyer.last_response
start_involve_moderator = False
deal_at = "none"
no_deal_cnt = 0
for _ in range(n_round):
seller_run = seller.call(buyer_run)
logger.write(' seller: %s' % seller.last_response)
if(start_involve_moderator is False and involve_moderator(buyer_run, seller_run)):
start_involve_moderator = True
logger.write('---- start moderating ----')
if(start_involve_moderator):
moderate = moderator.moderate(seller.dialog_history, who_was_last="seller")
logger.write('MODERATE have the seller and the buyer achieved a deal? Yes or No: %s' % moderate)
if("yes" in moderate.lower()):
deal_at = "seller"
break
else:
no_deal_cnt += 1
if(no_deal_cnt == no_deal_thres): break
buyer_run = buyer.call(seller_run)
logger.write(' buyer: %s' % buyer.last_response)
if(start_involve_moderator is False and involve_moderator(buyer_run, seller_run)):
start_involve_moderator = True
logger.write('---- start moderating ----')
if(start_involve_moderator):
moderate = moderator.moderate(buyer.dialog_history, who_was_last="buyer")
logger.write('MODERATE have the seller and the buyer achieved a deal? Yes or No: %s' % moderate)
if("yes" in moderate.lower()):
deal_at = "buyer"
break
else:
no_deal_cnt += 1
if(no_deal_cnt == no_deal_thres): break
if(deal_at != "none"):
if(deal_at == "seller"):
final_price = parse_final_price(seller.dialog_history)
else:
final_price = parse_final_price(buyer.dialog_history)
return final_price
else: return -1
def run_compare_critic_single(buyer, seller, moderator, critic,
const_feedback, human_feedback_pool,
game_type, n_round=10, who_is_first="seller"):
"""Run with multiple types of critic then compare the effect of different critics
"""
logger.write('==== RUN 1 ====')
buyer.reset()
seller.reset()
moderator.reset()
run_n_prices, run_n_prices_const, run_n_prices_human = [], [], []
run_1_price = run(buyer, seller, moderator, n_round=n_round, who_is_first=who_is_first)
logger.write('PRICE: %s' % run_1_price)
run_n_prices.append(run_1_price)
run_n_prices_const.append(run_1_price)
run_n_prices_human.append(run_1_price)
# Round 2 after critic
logger.write('==== RUN 2 ====')
if(game_type == "seller_compare_feedback"):
seller_hear_const = copy.deepcopy(seller)
seller_hear_human = copy.deepcopy(seller)
# ai feedback
buyer.reset()
moderator.reset()
ai_feedback = critic.criticize(seller.dialog_history)
logger.write("AI FEEDBACK:\n%s\n" % ai_feedback)
acknowledgement = seller.receive_feedback(ai_feedback, run_1_price)
logger.write("ACK:\n%s\n\n" % acknowledgement)
run_2_price = run(buyer, seller, moderator, n_round=n_round, who_is_first=who_is_first)
logger.write('PRICE: %s' % run_2_price)
run_n_prices.append(run_2_price)
# const feedback
buyer.reset()
moderator.reset()
logger.write("\n\nCONST FEEDBACK:\n%s\n" % const_feedback)
acknowledgement = seller_hear_const.receive_feedback(const_feedback, run_1_price)
logger.write("ACK:\n%s\n\n" % acknowledgement)
run_2_price = run(buyer, seller_hear_const, moderator, n_round=n_round, who_is_first=who_is_first)
logger.write('PRICE: %s' % run_2_price)
run_n_prices_const.append(run_2_price)
# human feedback
buyer.reset()
moderator.reset()
human_feedback = random.choice(human_feedback_pool)
logger.write("\n\nHUMAN FEEDBACK:\n%s\n" % human_feedback)
acknowledgement = seller_hear_human.receive_feedback(human_feedback, run_1_price)
logger.write("ACK:\n%s\n\n" % acknowledgement)
run_2_price = run(buyer, seller_hear_human, moderator, n_round=n_round, who_is_first=who_is_first)
logger.write('PRICE: %s' % run_2_price)
run_n_prices_human.append(run_2_price)
elif(game_type == "buyer_compare_feedback"):
raise NotImplementedError("buyer_compare_feedback not implemented yet")
else: raise ValueError("game_type must be either 'critize_seller' or 'critize_buyer'")
return run_n_prices, run_n_prices_const, run_n_prices_human
def run_compare_critic(args, buyer, seller, moderator, critic,
const_feedback, human_feedback_pool,
game_type,
n_exp=100, n_round=10, who_is_first="seller"):
"""run multiple experiments with multiple types of critic
"""
prices_ai_critic, prices_const_critic, prices_human_critic = [], [], []
start_time = time.time()
for i in range(n_exp):
logger.write("==== ver %s CASE %d / %d, %.2f min ====" % (args.ver, i, n_exp, compute_time(start_time)))
buyer.reset()
seller.reset()
moderator.reset()
ai_price, const_price, human_price = run_compare_critic_single(buyer, seller, moderator, critic,
const_feedback, human_feedback_pool,
game_type=game_type,
n_round=n_round, who_is_first=who_is_first)
if(check_k_price_range(ai_price, p_min=args.buyer_init_price, p_max=args.seller_init_price) and
check_k_price_range(const_price, p_min=args.buyer_init_price, p_max=args.seller_init_price) and
check_k_price_range(human_price, p_min=args.buyer_init_price, p_max=args.seller_init_price)
):
prices_ai_critic.append(ai_price)
prices_const_critic.append(const_price)
prices_human_critic.append(human_price)
assert(ai_price[0] == const_price[0] == human_price[0])
logger.write("\n\n\n\n")
round_0_price = [price[0] for price in prices_ai_critic]
round_1_price_ai_critic = [price[1] for price in prices_ai_critic]
round_1_price_const_critic = [price[1] for price in prices_const_critic]
round_1_price_human_critic = [price[1] for price in prices_human_critic]
logger.write("Round 0 price: %.2f std: %.2f" %
(np.mean(round_0_price), np.std(round_0_price))
)
logger.write("Round 1 price ai critic: %.2f std: %.2f" %
(np.mean(round_1_price_ai_critic), np.std(round_1_price_ai_critic))
)
logger.write("Round 1 price const critic: %.2f std: %.2f" %
(np.mean(round_1_price_const_critic), np.std(round_1_price_const_critic))
)
logger.write("Round 1 price human critic: %.2f std: %.2f" %
(np.mean(round_1_price_human_critic), np.std(round_1_price_human_critic))
)
logger.write("%d runs, %d effective" % (n_exp, len(prices_ai_critic)))
return
def run_simple(args, buyer, seller, moderator,
n_exp=100, n_round=10, who_is_first="seller"):
"""run multiple experiments without critic, simply checking if the model can play the game
"""
start_time = time.time()
for i in range(n_exp):
logger.write("==== ver %s CASE %d / %d, %.2f min ====" % (args.ver, i, n_exp, compute_time(start_time)))
buyer.reset()
seller.reset()
moderator.reset()
price = run(buyer, seller, moderator)
logger.write("\n\n\n\n")
return
def run_w_critic_rollout(args, buyer, seller, moderator, critic, game_type,
n_rollout=3,
n_round=10, who_is_first="seller"):
"""Run multiple rounds of bargaining with one single critic
"""
logger.write('==== RUN 1 ====')
buyer.reset()
seller.reset()
moderator.reset()
run_n_prices = []
run_1_price = run(buyer, seller, moderator, n_round=n_round, who_is_first=who_is_first)
logger.write('PRICE: %s' % run_1_price)
run_n_prices.append(run_1_price)
previous_price = run_1_price
for i in range(n_rollout - 1):
# Round i after critic
if(game_type == "criticize_seller"):
buyer.reset()
elif(game_type == "criticize_buyer"):
seller.reset()
else: raise ValueError("game_type must be either 'critize_seller' or 'critize_buyer'")
moderator.reset()
if(game_type == "criticize_seller"):
ai_feedback = critic.criticize(seller.dialog_history)
logger.write("FEEDBACK:\n%s\n\n" % ai_feedback)
acknowledgement = seller.receive_feedback(ai_feedback, previous_price)
logger.write("ACK:\n%s\n\n" % acknowledgement)
elif(game_type == "criticize_buyer"):
ai_feedback = critic.criticize(buyer.dialog_history)
logger.write("FEEDBACK:\n%s\n\n" % ai_feedback)
acknowledgement = buyer.receive_feedback(ai_feedback, previous_price)
logger.write("ACK:\n%s\n\n" % acknowledgement)
else: raise ValueError("game_type must be either 'critize_seller' or 'critize_buyer'")
logger.write('==== RUN %d ====' % (i + 2))
run_i_price = run(buyer, seller, moderator, n_round=n_round, who_is_first=who_is_first)
logger.write('PRICE: %s' % run_i_price)
if(check_price_range(
run_i_price, p_min=args.buyer_init_price, p_max=args.seller_init_price) == False
):
logger.write("run %d did not get a deal, stop unroll" % (i + 2))
break
run_n_prices.append(run_i_price)
previous_price = run_i_price
return run_n_prices
def run_with_critic(args, buyer, seller, moderator, critic, game_type,
n_exp=100, n_rollout=3, n_round=10, who_is_first="seller"):
"""run multiple experiments with one single critic
"""
round_k_prices = {k: [] for k in range(n_rollout)}
# for i in tqdm(range(n_exp)):
start_time = time.time()
for i in range(n_exp):
logger.write("==== ver %s CASE %d / %d | %.2f min ====" % (args.ver, i, n_exp, compute_time(start_time)))
buyer.reset()
seller.reset()
moderator.reset()
round_prices = run_w_critic_rollout(args, buyer, seller, moderator, critic, game_type,
n_rollout=n_rollout,
n_round=n_round, who_is_first=who_is_first)
# if(len(round_prices) == 5):
# if(check_k_price_range(round_prices)):
# for k in range(n_rollout):
# for k in range(len(round_prices)):
# round_k_prices[k].append(float(round_prices[k]))
# logger.write("%.2f" % round_prices[k])
logger.write("Price trace:")
for k in range(len(round_prices)):
round_k_prices[k].append(float(round_prices[k]))
logger.write("%.2f" % round_prices[k])
logger.write("\n\n\n\n")
for k in range(n_rollout):
logger.write("Round %d price: %.2f std: %.2f" % (k+1, np.mean(round_k_prices[k]), np.std(round_k_prices[k])))
logger.write("%d runs, %d effective" % (n_exp, len(round_k_prices[0])))
return
def main(args):
# seller init
seller_initial_dialog_history = load_initial_instructions('lib_prompt/%s.txt' % args.seller_instruction)
seller_engine_class, seller_api_key = get_engine_and_api_key(engine_name=args.seller_engine,
agent_type="seller", args=args
)
seller = seller_engine_class(initial_dialog_history=seller_initial_dialog_history,
agent_type="seller", engine=args.seller_engine, api_key=seller_api_key,
cost_price=args.cost_price,
buyer_init_price=args.buyer_init_price,
seller_init_price=args.seller_init_price
)
# buyer init
buyer_initial_dialog_history = load_initial_instructions('lib_prompt/%s.txt' % args.buyer_instruction)
buyer_engine_class, buyer_api_key = get_engine_and_api_key(engine_name=args.buyer_engine,
agent_type="buyer", args=args
)
buyer = buyer_engine_class(initial_dialog_history=buyer_initial_dialog_history,
agent_type="buyer", engine=args.buyer_engine, api_key=buyer_api_key,
buyer_instruction=args.buyer_instruction,
buyer_init_price=args.buyer_init_price,
seller_init_price=args.seller_init_price
)
# moderator init
moderator_initial_dialog_history = load_initial_instructions("lib_prompt/%s.txt" % args.moderator_instruction)
moderator_engine_class, moderator_api_key = get_engine_and_api_key(engine_name=args.moderator_engine,
agent_type="moderator", args=args
)
moderator = moderator_engine_class(initial_dialog_history=moderator_initial_dialog_history,
agent_type="moderator", engine=args.moderator_engine, api_key=moderator_api_key,
trace_n_history=args.moderator_trace_n_history
)
# critic init
if(args.game_type in ["criticize_seller", "seller_compare_feedback"]):
# seller critic init
seller_critic_initial_dialog_history = load_initial_instructions('lib_prompt/%s.txt' % args.seller_critic_instruction)
seller_critic_engine_class, seller_critic_api_key = get_engine_and_api_key(engine_name=args.seller_critic_engine,
agent_type="seller_critic", args=args
)
seller_critic = seller_critic_engine_class(initial_dialog_history=seller_critic_initial_dialog_history,
agent_type="critic", engine=args.seller_critic_engine, api_key=seller_critic_api_key
)
critic = seller_critic
elif(args.game_type == "criticize_buyer"):
# buyer critic init
buyer_critic_initial_dialog_history = load_initial_instructions('lib_prompt/%s.txt' % args.buyer_critic_instruction)
buyer_critic_engine_class, buyer_api_key = get_engine_and_api_key(engine_name=args.buyer_critic_engine,
agent_type="buyer_critic", args=args
)
buyer_critic = buyer_critic_engine_class(initial_dialog_history=buyer_critic_initial_dialog_history,
agent_type="critic", engine=args.buyer_critic_engine, api_key=buyer_api_key
)
critic = buyer_critic
elif(args.game_type == "run_simple"): pass
else: raise ValueError("game_type must be in ['criticize_seller', 'criticize_buyer', 'seller_compare_feedback', 'run_simple']")
# run
who_is_first = "seller"
if(args.buyer_instruction == "buyer_no_initial_price"): who_is_first = "buyer"
if(args.game_type in ["criticize_seller", "criticize_buyer"]):
run_with_critic(args, buyer, seller, moderator, critic,
game_type=args.game_type, n_exp=args.n_exp,
n_rollout=args.n_rollout, n_round=args.n_round,
who_is_first=who_is_first)
elif(args.game_type == "seller_compare_feedback"):
const_feedback = open(CONST_CRITIC_PATH).read().strip()
human_feedback_pool = open(HUMAN_CRITIC_PATH).read().strip().split("\n")
run_compare_critic(args, buyer, seller, moderator, critic,
const_feedback, human_feedback_pool,
game_type=args.game_type, n_exp=args.n_exp,
n_round=args.n_round,
who_is_first=who_is_first)
elif(args.game_type == "run_simple"):
run_simple(args, buyer, seller, moderator, n_exp=args.n_exp)
return
if __name__ == "__main__":
args = define_arguments()
logger = Logger(args.output_path + args.game_version + ".txt", args.verbose)
main(args)