-
Notifications
You must be signed in to change notification settings - Fork 3
/
DCGAN_torch.py
298 lines (248 loc) · 9.78 KB
/
DCGAN_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
import torch
from torch import nn
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
from torchvision import transforms
import numpy as np
import matplotlib.pyplot as plt
import uuid
# Configurable variables
NUM_EPOCHS = 50
NOISE_DIMENSION = 50
BATCH_SIZE = 128
TRAIN_ON_GPU = True
UNIQUE_RUN_ID = str(uuid.uuid4())
PRINT_STATS_AFTER_BATCH = 50
OPTIMIZER_LR = 0.0002
OPTIMIZER_BETAS = (0.5, 0.999)
# Speed ups
torch.autograd.set_detect_anomaly(False)
torch.autograd.profiler.profile(False)
torch.autograd.profiler.emit_nvtx(False)
torch.backends.cudnn.benchmark = True
class Generator(nn.Module):
"""
DCGan Generator
"""
def __init__(self,):
super().__init__()
num_feature_maps = 64
self.layers = nn.Sequential(
# First upsampling block
nn.ConvTranspose2d(NOISE_DIMENSION, num_feature_maps * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(num_feature_maps * 8),
nn.ReLU(),
# Second upsampling block
nn.ConvTranspose2d(num_feature_maps * 8, num_feature_maps * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(num_feature_maps * 4),
nn.ReLU(),
# Third upsampling block
nn.ConvTranspose2d(num_feature_maps * 4, num_feature_maps * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(num_feature_maps * 2),
nn.ReLU(),
# Fourth upsampling block
nn.ConvTranspose2d(num_feature_maps * 2, num_feature_maps, 4, 2, 1, bias=False),
nn.BatchNorm2d(num_feature_maps),
nn.ReLU(),
# Fifth upsampling block: note Tanh
nn.ConvTranspose2d(num_feature_maps, 1, 1, 1, 2, bias=False),
nn.Tanh()
)
def forward(self, x):
"""Forward pass"""
return self.layers(x)
class Discriminator(nn.Module):
"""
DCGan Discriminator
"""
def __init__(self):
super().__init__()
num_feature_maps = 64
self.layers = nn.Sequential(
nn.Conv2d(1, num_feature_maps, 4, 2, 1, bias=False),
nn.BatchNorm2d(num_feature_maps * 1),
nn.LeakyReLU(0.2),
nn.Conv2d(num_feature_maps, num_feature_maps * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(num_feature_maps * 2),
nn.LeakyReLU(0.2),
nn.Conv2d(num_feature_maps * 2, num_feature_maps * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(num_feature_maps * 4),
nn.LeakyReLU(0.2),
nn.Conv2d(num_feature_maps * 4, 1, 4, 2, 1, bias=False),
nn.Flatten(),
nn.Linear(1, 1),
nn.Sigmoid()
)
def forward(self, x):
"""Forward pass"""
return self.layers(x)
def get_device():
""" Retrieve device based on settings and availability. """
return torch.device("cuda:0" if torch.cuda.is_available() and TRAIN_ON_GPU else "cpu")
def make_directory_for_run():
""" Make a directory for this training run. """
print(f'Preparing training run {UNIQUE_RUN_ID}')
if not os.path.exists('./runs'):
os.mkdir('./runs')
os.mkdir(f'./runs/{UNIQUE_RUN_ID}')
def generate_image(generator, epoch = 0, batch = 0, device=get_device()):
""" Generate subplots with generated examples. """
images = []
noise = generate_noise(BATCH_SIZE, device=device)
generator.eval()
images = generator(noise)
plt.figure(figsize=(10, 10))
for i in range(16):
# Get image
image = images[i]
# Convert image back onto CPU and reshape
image = image.cpu().detach().numpy()
image = np.reshape(image, (28, 28))
# Plot
plt.subplot(4, 4, i+1)
plt.imshow(image, cmap='gray')
plt.axis('off')
if not os.path.exists(f'./runs/{UNIQUE_RUN_ID}/images'):
os.mkdir(f'./runs/{UNIQUE_RUN_ID}/images')
plt.savefig(f'./runs/{UNIQUE_RUN_ID}/images/epoch{epoch}_batch{batch}.jpg')
def save_models(generator, discriminator, epoch):
""" Save models at specific point in time. """
torch.save(generator.state_dict(), f'./runs/{UNIQUE_RUN_ID}/generator_{epoch}.pth')
torch.save(discriminator.state_dict(), f'./runs/{UNIQUE_RUN_ID}/discriminator_{epoch}.pth')
def print_training_progress(batch, generator_loss, discriminator_loss):
""" Print training progress. """
print('Losses after mini-batch %5d: generator %e, discriminator %e' %
(batch, generator_loss, discriminator_loss))
def prepare_dataset():
""" Prepare dataset through DataLoader """
# Prepare MNIST dataset
dataset = MNIST(os.getcwd(), download=True, train=True, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]))
# Batch and shuffle data with DataLoader
trainloader = torch.utils.data.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True)
# Return dataset through DataLoader
return trainloader
def weights_init(m):
""" Normal weight initialization as suggested for DCGANs """
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
def initialize_models(device = get_device()):
""" Initialize Generator and Discriminator models """
generator = Generator()
discriminator = Discriminator()
# Perform proper weight initialization
generator.apply(weights_init)
discriminator.apply(weights_init)
# Move models to specific device
generator.to(device)
discriminator.to(device)
# Return models
return generator, discriminator
def initialize_loss():
""" Initialize loss function. """
return nn.BCELoss()
def initialize_optimizers(generator, discriminator):
""" Initialize optimizers for Generator and Discriminator. """
generator_optimizer = torch.optim.AdamW(generator.parameters(), lr=OPTIMIZER_LR,betas=OPTIMIZER_BETAS)
discriminator_optimizer = torch.optim.AdamW(discriminator.parameters(), lr=OPTIMIZER_LR,betas=OPTIMIZER_BETAS)
return generator_optimizer, discriminator_optimizer
def generate_noise(number_of_images = 1, noise_dimension = NOISE_DIMENSION, device=None):
""" Generate noise for number_of_images images, with a specific noise_dimension """
return torch.randn(number_of_images, noise_dimension, 1, 1, device=device)
def efficient_zero_grad(model):
"""
Apply zero_grad more efficiently
Source: https://betterprogramming.pub/how-to-make-your-pytorch-code-run-faster-93079f3c1f7b
"""
for param in model.parameters():
param.grad = None
def forward_and_backward(model, data, loss_function, targets):
"""
Perform forward and backward pass in a generic way. Returns loss value.
"""
outputs = model(data)
error = loss_function(outputs, targets)
error.backward()
return error.item()
def perform_train_step(generator, discriminator, real_data, \
loss_function, generator_optimizer, discriminator_optimizer, device = get_device()):
""" Perform a single training step. """
# 1. PREPARATION
# Set real and fake labels.
real_label, fake_label = 1.0, 0.0
# Get images on CPU or GPU as configured and available
# Also set 'actual batch size', whih can be smaller than BATCH_SIZE
# in some cases.
real_images = real_data[0].to(device)
actual_batch_size = real_images.size(0)
label = torch.full((actual_batch_size,1), real_label, device=device)
# 2. TRAINING THE DISCRIMINATOR
# Zero the gradients for discriminator
efficient_zero_grad(discriminator)
# Forward + backward on real iamges
error_real_images = forward_and_backward(discriminator, real_images, \
loss_function, label)
# Forward + backward on generated images
noise = generate_noise(actual_batch_size, device=device)
generated_images = generator(noise)
label.fill_(fake_label)
error_generated_images =forward_and_backward(discriminator, \
generated_images.detach(), loss_function, label)
# Optim for discriminator
discriminator_optimizer.step()
# 3. TRAINING THE GENERATOR
# Forward + backward + optim for generator, including zero grad
efficient_zero_grad(generator)
label.fill_(real_label)
error_generator = forward_and_backward(discriminator, generated_images, loss_function, label)
generator_optimizer.step()
# 4. COMPUTING RESULTS
# Compute loss values in floats for discriminator, which is joint loss.
error_discriminator = error_real_images + error_generated_images
# Return generator and discriminator loss so that it can be printed.
return error_generator, error_discriminator
def perform_epoch(dataloader, generator, discriminator, loss_function, \
generator_optimizer, discriminator_optimizer, epoch):
""" Perform a single epoch. """
for batch_no, real_data in enumerate(dataloader, 0):
# Perform training step
generator_loss_val, discriminator_loss_val = perform_train_step(generator, \
discriminator, real_data, loss_function, \
generator_optimizer, discriminator_optimizer)
# Print statistics and generate image after every n-th batch
if batch_no % PRINT_STATS_AFTER_BATCH == 0:
print_training_progress(batch_no, generator_loss_val, discriminator_loss_val)
generate_image(generator, epoch, batch_no)
# Save models on epoch completion.
save_models(generator, discriminator, epoch)
# Clear memory after every epoch
torch.cuda.empty_cache()
def train_dcgan():
""" Train the DCGAN. """
# Make directory for unique run
make_directory_for_run()
# Set fixed random number seed
torch.manual_seed(42)
# Get prepared dataset
dataloader = prepare_dataset()
# Initialize models
generator, discriminator = initialize_models()
# Initialize loss and optimizers
loss_function = initialize_loss()
generator_optimizer, discriminator_optimizer = initialize_optimizers(generator, discriminator)
# Train the model
for epoch in range(NUM_EPOCHS):
print(f'Starting epoch {epoch}...')
perform_epoch(dataloader, generator, discriminator, loss_function, \
generator_optimizer, discriminator_optimizer, epoch)
# Finished :-)
print(f'Finished unique run {UNIQUE_RUN_ID}')
if __name__ == '__main__':
train_dcgan()