diff --git a/docs/src/index.md b/docs/src/index.md index c17ea19d..25653055 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -88,14 +88,14 @@ The bibtex entry for the paper is: 1. Siegelman, L. and Young, W. R. (2023). Two-dimensional turbulence above topography: Vortices and potential vorticity homogenization. _Proceedings of the National Academy of Sciences_, **120(44)**, e2308018120, doi:[10.1073/pnas.2308018120](https://doi.org/10.1073/pnas.2308018120). -2. Bisits, J. I., Stanley G. J., and Zika, J. D. (2023). Can we accurately quantify a lateral diffusivity using a single tracer release? _Journal of Physical Oceanography_, **53(2)**, 647–659, doi:[10.1175/JPO-D-22-0145.1](https://doi.org/10.1175/JPO-D-22-0145.1). +1. Bisits, J. I., Stanley G. J., and Zika, J. D. (2023). Can we accurately quantify a lateral diffusivity using a single tracer release? _Journal of Physical Oceanography_, **53(2)**, 647–659, doi:[10.1175/JPO-D-22-0145.1](https://doi.org/10.1175/JPO-D-22-0145.1). -3. Siegelman, L., Young, W. R., and Ingersoll, A. P. (2022). Polar vortex crystals: Emergence and structure _Proceedings of the National Academy of Sciences_, **119(17)**, e2120486119. doi:[10.1073/pnas.2120486119](https://doi.org/10.1073/pnas.2120486119). +1. Siegelman, L., Young, W. R., and Ingersoll, A. P. (2022). Polar vortex crystals: Emergence and structure _Proceedings of the National Academy of Sciences_, **119(17)**, e2120486119. doi:[10.1073/pnas.2120486119](https://doi.org/10.1073/pnas.2120486119). -4. Dolce, M. and Drivas, T. D. (2022). On maximally mixed equilibria of two-dimensional perfect fluids. _Archive for Rational Mechanics and Analysis_, 2022, doi:[10.1007/s00205-022-01825-w](https://doi.org/10.1007/s00205-022-01825-w). +1. Dolce, M. and Drivas, T. D. (2022). On maximally mixed equilibria of two-dimensional perfect fluids. _Archive for Rational Mechanics and Analysis_, 2022, doi:[10.1007/s00205-022-01825-w](https://doi.org/10.1007/s00205-022-01825-w). -5. Drivas, T. D. and Elgindi, T. M. (2022). Singularity formation in the incompressible Euler equation in finite and infinite time. arXiv preprint arXiv:2203.17221, doi:[10.48550/arXiv.2203.17221](https://doi.org/10.48550/arXiv.2203.17221). +1. Drivas, T. D. and Elgindi, T. M. (2022). Singularity formation in the incompressible Euler equation in finite and infinite time. arXiv preprint arXiv:2203.17221, doi:[10.48550/arXiv.2203.17221](https://doi.org/10.48550/arXiv.2203.17221). -6. Palóczy, A., and LaCasce, J. H. (2022). Instability of a surface jet over rough topography. _Journal of Physical Oceanography_, **52(11)**, 2725-2740, doi:[10.1175/JPO-D-22-0079.1](https://doi.org/10.1175/JPO-D-22-0079.1). +1. Palóczy, A., and LaCasce, J. H. (2022). Instability of a surface jet over rough topography. _Journal of Physical Oceanography_, **52(11)**, 2725-2740, doi:[10.1175/JPO-D-22-0079.1](https://doi.org/10.1175/JPO-D-22-0079.1). -7. Karrasch, D., and Schilling, N. (2020). Fast and robust computation of coherent Lagrangian vortices on very large two-dimensional domains. _The SMAI Journal of Computational Mathematics_, **6**, 101-124, doi:[10.5802/smai-jcm.63](https://doi.org/10.5802/smai-jcm.63). +1. Karrasch, D., and Schilling, N. (2020). Fast and robust computation of coherent Lagrangian vortices on very large two-dimensional domains. _The SMAI Journal of Computational Mathematics_, **6**, 101-124, doi:[10.5802/smai-jcm.63](https://doi.org/10.5802/smai-jcm.63).