-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDatasets.txt
37 lines (32 loc) · 2.03 KB
/
Datasets.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Data sets die niet 100gb zijn, meer tussen de 20 en 1 gb.
niet medisch:
https://www.kaggle.com/smeschke/four-shapes
https://www.kaggle.com/moltean/fruits
https://www.kaggle.com/thedownhill/art-images-drawings-painting-sculpture-engraving
https://www.kaggle.com/iarunava/happy-house-dataset
https://www.kaggle.com/google/tinyquickdraw
https://www.kaggle.com/prasunroy/natural-images
medisch:
https://www.kaggle.com/kmader/colorectal-histology-mnist
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/skooch/ddsm-mammography
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
https://www.kaggle.com/paultimothymooney/blood-cells
Paper source: https://arxiv.org/pdf/1810.05444.pdf
name, methode, #img #classes used in paper:
STL-10 object recognition 100K 10 Schlegl et al. (2014)
Places scene recognition 2.5M 205 Zhang et al. (2017) Du et al. (2018)
DTD texture classification 5.6K 47 Ribeiro et al. (2017) Shi et al. (2018) (Christodoulidis et al., 2017)
ALOT texture classification 28K 250 Ribeiro et al. (2017) (Christodoulidis et al., 2017)
KTH-TIPS texture classification 810 10 Ribeiro et al. (2017) (Christodoulidis et al., 2017)
CIFAR-10 object classification 60K 10 Shin et al. (2016) Cha et al. (2017)
FMD texture classification 1K 10 Christodoulidis et al. (2017)
KTB texture classification 4.5K 27 Christodoulidis et al. (2017)
UIUC texture classification 1K 25 Christodoulidis et al. (2017)
CALTECH-101 object recognition 9K 101 Ribeiro et al. (2017)
COREL-1000 scene recognition 1K 10 Ribeiro et al. (2017)
Kaggle-DR image classification 35K 2 Menegola et al. (2017)
INbreast breasr lesesion classi 410 2 Shi et al. (2018)
ICPR 2012 hr2-cell classification 1.5K 6 Lei et al. (2018)
https://github.com/sfikas/medical-imaging-datasets
some more...