Skip to content

Latest commit

 

History

History
61 lines (50 loc) · 1.62 KB

README.md

File metadata and controls

61 lines (50 loc) · 1.62 KB

graduation_design_PLTD3

算法当前存在问题

当前模型测试问题

  1. 机器人在初始化后,若遇到障碍物较为紧密(例如前方很近的地方都是障碍物或只有可通行空间极小),机器人会由于训练时的奖励函数惩罚机器人后退,而不太敢后退以寻求更优路径

训练策略

  1. 单训练 27h未收敛
  2. 无障碍物 -> 有障碍物 -> 动态障碍物 26h收敛
  3. 奖励值修改 增加单步惩罚(当前幕开始距离 / 决策步数) 增加角速度惩罚 -> 鼓励向目标接近 18h收敛

Build the Project

Build ROS Code

cd {Your PROJECT PATH}/catkin_ws
catkin_make_isolated

SET bashrc to update the ros environment:

export ROS_HOSTNAME=localhost
export ROS_MASTER_URI=http://localhost:11311
export ROS_PORT_SIM=11311
export GAZEBO_RESOURCE_PATH=~/DRL-robot-navigation/catkin_ws/src/multi_robot_scenario/launch
source {Your PROJECT PATH}/devel_isolated/setup.bash

And then reload the file bashrc

source ~/.bashrc

Install The Python Package or Creat the new environment of conda

# INSTALL THE PYTHON PACKAGE
pip install -f requirements.txt

or

# CREATE THE NEW conda ENVIRONMENT
conda env create -f environment.yml

Train the model

cd {Your PROJECT PATH}/TD3
python3 train_velodyne_td3.py

To kill the training process:

killall -9 rosout roslaunch rosmaster gzserver nodelet robot_state_publisher gzclient python python3

Once training is completed, test the model:

cd {Your PROJECT PATH}/TD3
python3 test_velodyne_td3.py