-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathscript.py
1378 lines (1040 loc) · 54.7 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import gradio as gr
import re
import os
import shutil
from pathlib import Path
import json
from peft import PeftModel
import modules.shared as shared
from modules.LoRA import add_lora_autogptq, add_lora_exllamav2
# add_lora_exllama removed
import torch
from datetime import datetime
from functools import partial
try:
from peft.config import PeftConfig
print("NEW PEFT is installed")
except ImportError:
print("Error: you are using an old PEFT version. LORA merging will not work. You need to update to the latest version")
from peft.utils.config import PeftConfig
params = {
"display_name": "Virtual Lora",
"is_tab": True,
}
g_print_twice = False
folder_tree = {}
comments = {}
struct_params = {
"edit": True,
"root_SEL": "",
"folders_SEL": "None",
"subfolders_SEL": "None",
"selected_template": "Latest",
"sort_by_date": False,
"strength": 100
}
RED = "\033[91m"
YELLOW = "\033[93m"
GREEN = "\033[92m"
RESET = "\033[0m"
BYDATE = "[All By Month]"
BYDATE2 = "[Last 10 dates]"
refresh_symbol = '\U0001f504' # 🔄
str_status_text = 'Ready'
def get_file_path(filename):
basepath = "extensions/VirtualLora/"+filename
#if os.path.exists(basepath):
# return basepath
#else:
# return None
return basepath
def save_folder_file(string,filename):
path = get_file_path("Templates/"+filename+".txt")
try:
with open(path, 'w', encoding='utf-8') as file:
file.write(string)
print(f"Tree saved {path}")
except Exception as e:
print("Error occurred while saving string to file:", str(e))
def load_folder_file(filename):
if filename==BYDATE:
file_content = create_Folders_byDate(False)
return file_content
if filename==BYDATE2:
file_content = create_Folders_byDate(True)
return file_content
path = get_file_path("Templates/"+filename+".txt")
try:
with open(path, 'r', encoding='utf-8') as file:
file_content = file.read()
print(f"File loaded from: {path}")
return file_content
except FileNotFoundError:
print(f"The file '{path}' does not exist.")
return ""
def get_comment(subfolder_name):
global folder_tree
global comments
comment = ''
try:
if subfolder_name in comments:
# Display comment for the subfolder
comment = comments[subfolder_name]
#print(f"Comment for '{subfolder_name}' (inside '{folder_name}'): {comment}")
except KeyError:
pass
return comment
def create_folder_tree(input_string):
global folder_tree
global comments
folder_tree = {}
comments = {}
lines = input_string.split('\n')
current_folder = None
for line in lines:
# Remove any comment (if present) by splitting the line at the '#' character
parts = line.split(' #', 1)
line = parts[0]
comment = parts[1].strip() if len(parts) > 1 else ''
if line.startswith('+'):
if current_folder is not None:
newline = line[1:]
newline = newline.strip()
folder_tree[current_folder].append(newline)
comments[newline] = comment
else:
line = line.strip()
if line != '':
current_folder = line
folder_tree[current_folder] = []
def get_root_list():
global folder_tree
root_folders = []
for folder in folder_tree:
root_folders.append(folder)
return root_folders
def create_Folders_byDate(last_five):
# Define the root folder
rootFolder = shared.args.lora_dir
if not rootFolder.endswith('/'):
rootFolder += '/'
# Create a list to store subfolder information
subfolder_info = []
index = 0
print(f"Looking and sorting folders:")
# Walk through the root folder to get subfolders
name_list = os.listdir(rootFolder)
full_list = [os.path.join(rootFolder, i) for i in name_list]
for foldername in full_list:
fimename = f"{foldername}"+"/adapter_config.json"
if os.path.exists(fimename):
try:
file_timestamp = os.path.getmtime(fimename)
formatted_date = datetime.fromtimestamp(file_timestamp).strftime("%Y-%m-%d-%H-%M")
if last_five:
formatted_date_min = datetime.fromtimestamp(file_timestamp).strftime("%Y-%m-%d")
else:
formatted_date_min = datetime.fromtimestamp(file_timestamp).strftime("%Y-%m")
# Create a dictionary for the subfolder
except:
formatted_date = "1999-00-00-00-00"
formatted_date_min = "Unknown"
subfolder_name = os.path.basename(foldername)
subfolder_dict = {
"subfolder": subfolder_name,
"date": formatted_date,
"date_min": formatted_date_min
}
subfolder_info.append(subfolder_dict)
index = index +1
# Sort the subfolder_info list based on the "date" key
subfolder_info.sort(key=lambda x: x["date"], reverse=True)
print(f" Found: {index} folders")
# Create a string to group subfolders by date
grouped_subfolders_string = ""
current_date = None
idx = 0
for subfolder in subfolder_info:
subfrom = subfolder["date_min"]
if subfrom != current_date:
if last_five and idx>9:
return grouped_subfolders_string
if current_date:
grouped_subfolders_string += "\n"
current_date = subfrom
grouped_subfolders_string += current_date + "\n"
idx = idx+1
grouped_subfolders_string += "+ " + subfolder["subfolder"] + "\n"
return grouped_subfolders_string
def get_folder_list(selected_root_folder):
global folder_tree
if selected_root_folder in folder_tree:
subfolders = list(folder_tree[selected_root_folder])
return subfolders
else:
return ["None"]
def atoi(text):
return int(text) if text.isdigit() else text.lower()
def natural_keys(text):
return [atoi(c) for c in re.split(r'(\d+)', text)]
def string_to_name_list(input_string):
# Split the input string by commas and remove leading/trailing spaces
name_list = [name.strip() for name in input_string.split(',')]
return name_list
def name_list_to_string(name_list):
# Join the list of names with commas
return ', '.join(name_list)
def get_available_templates():
templpath = get_file_path("Templates")
paths = (x for x in Path(templpath).iterdir() if x.suffix in ('.txt'))
sortedlist = sorted(set((k.stem for k in paths)), key=natural_keys)
if len(sortedlist)==0:
sortedlist = ['Latest']
sortedlist.insert(0, BYDATE)
sortedlist.insert(0, BYDATE2)
return sortedlist
def list_Folders_byDate(directory):
if not directory.endswith('/'):
directory += '/'
subfolders = []
path = directory
name_list = os.listdir(path)
full_list = [os.path.join(path, i) for i in name_list]
time_sorted_list = sorted(full_list, key=os.path.getmtime , reverse=True)
for entry in time_sorted_list:
if os.path.isdir(entry):
entry_str = f"{entry}" # Convert entry to a string
full_path = entry_str
entry_str = entry_str.replace('\\','/')
entry_str = entry_str.replace(f"{directory}", "") # Remove directory part
entry_str = entry_str.strip()
entry_str = "+ "+ entry_str
subfolders.append(entry_str)
return subfolders
def list_Folders_byAlpha(directory):
if not directory.endswith('/'):
directory += '/'
subfolders = []
path = directory
name_list = os.listdir(path)
full_list = [os.path.join(path, i) for i in name_list]
time_sorted_list = sorted(full_list, key=natural_keys, reverse=False)
for entry in time_sorted_list:
if os.path.isdir(entry):
entry_str = f"{entry}" # Convert entry to a string
full_path = entry_str
entry_str = entry_str.replace('\\','/')
entry_str = entry_str.replace(f"{directory}", "") # Remove directory part
entry_str = entry_str.strip()
entry_str = "+ "+ entry_str
subfolders.append(entry_str)
return subfolders
#sort in natural order reverse
def list_subfolders(directory):
subfolders = []
if os.path.isdir(directory):
subfolders.append('Final')
for entry in os.scandir(directory):
if entry.is_dir() and entry.name != 'runs':
subfolders.append(entry.name)
return sorted(subfolders, key=natural_keys, reverse=True)
def save_pickle():
global struct_params
file_nameJSON = get_file_path("params.json")
try:
with open(file_nameJSON, 'w') as json_file:
json.dump(struct_params, json_file,indent=2)
print(f"Saved: {file_nameJSON}")
except IOError as e:
print(f"An error occurred while saving the file: {e}")
def path_to_LORA(selectlora , selectsub):
if selectsub=='':
selectsub = 'Final'
if selectsub and selectsub!='Final':
return f"{selectlora}/{selectsub}"
return f"{selectlora}"
def load_pickle():
global struct_params
file_nameJSON = get_file_path("params.json")
try:
with open(file_nameJSON, 'r') as json_file:
new_params = json.load(json_file)
for item in new_params:
struct_params[item] = new_params[item]
except FileNotFoundError:
print(f"Default values, the file '{file_nameJSON}' does not exist.")
def load_note():
selected_lora_main = struct_params["folders_SEL"]
if selected_lora_main=='':
return ""
path = path_to_LORA(selected_lora_main,"Final")
full_path = Path(f"{shared.args.lora_dir}/{path}/notes.txt")
note = f'<h3 style="color: orange;">{selected_lora_main}</h3>'
if full_path.is_file():
try:
with open(full_path, 'r', encoding='utf-8') as file:
note = note+file.read()
except:
pass
return note
def display_comment():
selected_lora_main = struct_params["folders_SEL"]
if selected_lora_main=='':
return ""
comment = get_comment(selected_lora_main)
return comment
def load_training_param():
selected_lora_main = struct_params["folders_SEL"]
selected_lora_sub = struct_params['subfolders_SEL']
if selected_lora_main=='':
return "No Lora selected in Folder column"
table_html = '<table>'
path = path_to_LORA(selected_lora_main,"Final")
full_path = Path(f"{shared.args.lora_dir}/{path}/training_parameters.json")
try:
with open(full_path, 'r') as json_file:
new_params = json.load(json_file)
except FileNotFoundError:
new_params = {} # Initialize as an empty dictionary if the file is not found
# Define the keys you want to include in the table
keys_to_include = ['dataset', 'raw_text_file', 'format', 'micro_batch_size', 'grad_accumulation', 'epochs', 'learning_rate', 'lora_rank','lora_alpha', 'cutoff_len','add_bos_token', 'add_eos_token']
keys_to_rename = ['JSON','TXT', 'format', 'batch', 'GA', 'epochs', 'LR','r','alpha','cutoff','BOS','EOS',]
pastel_colors = [
'#FFC3A0', # Light Orange
'#FF677D', # Light Pink
'#D4A5A5', # Pale Pink
'#9A8C98', # Light Gray
'#90A8A4', # Pale Teal
'#ABC7B2', # Soft Green
'#E4F9B4', # Light Yellow
'#FFD1DC', # Pastel Pink
'#B5EAD7', # Seafoam Green
'#FFE156', # Pastel Yellow
'#A9E6E3', # Pale Blue-Green
'#F5D9C3' # Peach
]
# Create table header
header_row = '<tr style="text-align: center;">'
for i, key in enumerate(keys_to_include):
newkey = keys_to_rename[i]
background_color = pastel_colors[i % len(pastel_colors)] # Cycle through pastel colors
header_row += f'<th style="border: 1px solid gray; padding: 8px; text-align: center; background-color: {background_color}; color: black;">{newkey}</th>'
header_row += '</tr>'
table_html += header_row
# Create table data rows
data_row = '<tr style="text-align: center;">'
for key in keys_to_include:
value = new_params.get(key, '')
if isinstance(value, float) and value < 1:
value = f'{value:.1e}'
elif isinstance(value, float):
value = f'{value:.2f}'
data_row += f'<td style="border: 1px solid gray; padding: 8px; text-align: center;">{value}</td>'
data_row += '</tr>'
table_html += data_row
table_html += '</table>'
return table_html
def load_log():
global struct_params
selected_lora_main = struct_params["folders_SEL"]
selected_lora_sub = struct_params['subfolders_SEL']
if selected_lora_main=='':
return "None","Select LoRA"
adapter_params = None
new_params = None
old_adapter_params = None
path = path_to_LORA(selected_lora_main,selected_lora_sub)
full_path = Path(f"{shared.args.lora_dir}/{path}/training_log.json")
full_pathAda = Path(f"{shared.args.lora_dir}/{path}/adapter_config.json")
full_pathorig = Path(f"{shared.args.lora_dir}/{path}/adapter_config_BK.json")
try:
with open(full_pathAda, 'r') as json_file:
adapter_params = json.load(json_file)
except:
pass
str_noteline = ''
table_html = '<table>'
try:
with open(full_path, 'r') as json_file:
new_params = json.load(json_file)
except FileNotFoundError:
pass
# check if full_pathorig exists
if full_pathorig.is_file():
with open(full_pathorig, 'r') as json_file:
old_adapter_params = json.load(json_file)
# get 'lora_alpha' in new_params
current_alpha = 0
main_alpha = 0
if adapter_params:
if 'lora_alpha' in adapter_params:
current_alpha = adapter_params['lora_alpha']
# if old_adapter_params then replace lora_alpha in adapter_params with lora_alpha from old_adapter_params
if old_adapter_params and adapter_params:
if 'lora_alpha' in old_adapter_params:
old_alpha = old_adapter_params['lora_alpha']
adapter_params['lora_alpha'] = old_alpha
# set struct_params strength
if adapter_params:
if 'lora_alpha' in adapter_params:
main_alpha = adapter_params['lora_alpha']
struct_params['strength'] = 100
if current_alpha > 0 and main_alpha > 0 and main_alpha != current_alpha:
struct_params['strength'] = int((current_alpha/main_alpha)*100)
row_one = '<tr style="text-align: center;">'
row_two = '<tr style="text-align: center;">'
if new_params:
keys_to_include = ['base_model_name', 'loss', 'learning_rate', 'epoch', 'current_steps', 'projections', 'epoch_adjusted']
epoch_str = ''
for key, value in new_params.items():
if key=='note':
str_noteline = f"\nNote: {value}"
if key=="base_model_name":
base_model = f"Base: {value}"
if key =="epoch":
epoch_str = f'{value:.2}'
if key in keys_to_include:
# Create the first row with keys
valid = True
if key == "epoch_adjusted":
value2 = new_params.get(key, '')
epoch_str2 = f'{value2:.2}'
if epoch_str==epoch_str2:
valid = False
if valid:
row_one += f'<th style="border: 1px solid gray; padding: 8px; text-align: center; background-color: #233958; color: white;">{key}</th>'
value = new_params.get(key, '')
if isinstance(value, float) and value < 1:
value = f'{value:.1e}'
elif isinstance(value, float):
value = f'{value:.2}'
row_two += f'<td style="border: 1px solid gray; padding: 8px; text-align: center;">{value}</td>'
if new_params and adapter_params:
keys_to_include = ['r', 'lora_alpha']
for key, value in adapter_params.items():
if key in keys_to_include:
row_one += f'<th style="border: 1px solid gray; padding: 8px; text-align: center; background-color: #235358; color: white;">{key}</th>'
value = adapter_params.get(key, '')
if isinstance(value, float) and value < 1:
value = f'{value:.1e}'
elif isinstance(value, float):
value = f'{value:.2}'
row_two += f'<td style="border: 1px solid gray; padding: 8px; text-align: center;">{value}</td>'
if new_params==None and adapter_params:
keys_to_include = ['base_model_name_or_path','r', 'lora_alpha', 'c_alpha', 'target_modules']
row_one += f'<th style="border: 1px solid gray; padding: 8px; text-align: center; background-color: #8E2438; color: white;">No log file</th>'
row_two += f'<td style="border: 1px solid gray; padding: 8px; text-align: center;">training_log.json</td>'
for key, value in adapter_params.items():
if key in keys_to_include:
row_one += f'<th style="border: 1px solid gray; padding: 8px; text-align: center; background-color: #235358; color: white;">{key}</th>'
value = adapter_params.get(key, '')
if isinstance(value, float) and value < 1:
value = f'{value:.1e}'
elif isinstance(value, float):
value = f'{value:.2}'
row_two += f'<td style="border: 1px solid gray; padding: 8px; text-align: center;">{value}</td>'
# if current_alpha > 0 and main_alpha > 0 and main_alpha != current_alpha then add another column but red
if current_alpha > 0 and main_alpha > 0 and main_alpha != current_alpha:
row_one += f'<th style="border: 1px solid gray; padding: 8px; text-align: center; background-color: #8E2438; color: white;">alpha</th>'
row_two += f'<td style="border: 1px solid gray; padding: 8px; text-align: center;">{current_alpha}</td>'
row_one += '</tr>'
row_two += '</tr>'
table_html += row_one + row_two + '</table>'
return table_html+str_noteline
def get_loaded_adapters():
prior_set = []
if hasattr(shared.model,'peft_config'):
for adapter_name in shared.model.peft_config.items():
prior_set.append(adapter_name[0])
return prior_set
def get_available_adapters_ui():
#print (f"Scaling {shared.model.base_model.scaling}")
prior_set = ['None']
if shared.model:
if hasattr(shared.model,'peft_config'):
print(RED+"List of available adapters in model:"+RESET)
index = 1
for adapter_name in shared.model.peft_config.items():
print(f" {GREEN}{index}:{RESET} {adapter_name[0]}")
index = index+1
prior_set.append(adapter_name[0])
if index == 1:
print(RED+" [None]"+RESET)
else:
print('(no model loaded yet)')
return prior_set
def add_lora_to_model(lora_name):
#elif shared.model.__class__.__name__ in ['ExllamaModel', 'ExllamaHF'] or shared.args.loader == 'ExLlama':
# add_lora_exllama([lora_name])
if 'GPTQForCausalLM' in shared.model.__class__.__name__ or shared.args.loader == 'AutoGPTQ':
add_lora_autogptq([lora_name])
elif shared.model.__class__.__name__ in ['Exllamav2Model', 'Exllamav2HF'] or shared.args.loader == ['ExLlamav2', 'ExLlamav2_HF']:
add_lora_exllamav2([lora_name])
else:
params = {}
if not shared.args.cpu:
if shared.args.load_in_4bit or shared.args.load_in_8bit:
params['peft_type'] = shared.model.dtype
else:
params['dtype'] = shared.model.dtype
if hasattr(shared.model, "hf_device_map"):
params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()}
print(f"Applying the following LoRAs to {shared.model_name}: {lora_name}")
lora_path = Path(f"{shared.args.lora_dir}/{lora_name}")
lora_path_bin = Path(f"{shared.args.lora_dir}/{lora_name}/adapter_model.bin")
# safetensors version
lora_path_sf = Path(f"{shared.args.lora_dir}/{lora_name}/adapter_model.safetensors")
if lora_path_sf.is_file():
lora_path_bin = lora_path_sf
if lora_path_bin.is_file():
safeloraname = lora_name.replace('.', '_')
shared.model = PeftModel.from_pretrained(shared.model, lora_path, adapter_name=safeloraname, **params)
if not shared.args.load_in_8bit and not shared.args.cpu:
shared.model.half()
if not hasattr(shared.model, "hf_device_map"):
if torch.backends.mps.is_available():
device = torch.device('mps')
shared.model = shared.model.to(device)
else:
shared.model = shared.model.cuda()
else:
print(f"{RED}Adapter file (adapter_model.bin) doesn't exist in {RESET}{lora_path}")
# if old PEFT, you need to remove these form adapter_config.json
#adapter_config.pop('eva_config', None)
#adapter_config.pop('exclude_modules', None)
#adapter_config.pop('lora_bias', None)
def set_strength():
global struct_params
strength = struct_params['strength']/100.0
selected_lora_main = struct_params["folders_SEL"]
selected_lora_sub = struct_params['subfolders_SEL']
path = path_to_LORA(selected_lora_main, selected_lora_sub)
lora_path = Path(f"{shared.args.lora_dir}/{path}")
#first check if adapter_config_BK.json exist and if not copy adapter_config.json to adapter_config_BK.json
if os.path.isfile(f"{lora_path}/adapter_config.json"):
if not os.path.isfile(f"{lora_path}/adapter_config_BK.json"):
# copy adapter_config.json to adapter_config_BK.json and give error if it fails
try:
shutil.copy(f"{lora_path}/adapter_config.json", f"{lora_path}/adapter_config_BK.json")
print(f"{RED}adapter_config_BK.json created {RESET}")
except:
print(f"{RED}Error: adapter_config_BK.json not created {RESET}")
# Define the paths
reference_file = f"{lora_path}/adapter_config.json"
target_file = f"{lora_path}/adapter_config_BK.json"
# Get the timestamps of the reference file
stat = os.stat(reference_file)
# Apply the same timestamps to the target file
# make sure target_file exists
if os.path.isfile(target_file):
os.utime(target_file, (stat.st_atime, stat.st_mtime))
old_adapter_params = None
new_params = None
if os.path.isfile(f"{lora_path}/adapter_config_BK.json"):
with open(f"{lora_path}/adapter_config_BK.json", 'r') as json_file:
old_adapter_params = json.load(json_file)
#print(f"{YELLOW}Original Adapter parameters in {RESET}{lora_path}/adapter_config_BK.json")
# get the current adapter parameters
if os.path.isfile(f"{lora_path}/adapter_config.json"):
with open(f"{lora_path}/adapter_config.json", 'r') as json_file:
new_params = json.load(json_file)
#print(f"{YELLOW}Current Adapter parameters in {RESET}{lora_path}/adapter_config.json")
# find lora_alpha in old_adapter_params
if old_adapter_params and new_params:
if 'lora_alpha' in old_adapter_params:
old_alpha = old_adapter_params['lora_alpha']
print(f"Original alpha: {old_alpha}")
new_alpha = int(old_alpha * strength)
print(f"New alpha: {new_alpha}")
# update new_params with new_alpha
if new_params:
# check if we actually need to resave
if new_alpha != new_params['lora_alpha']:
new_params['lora_alpha'] = new_alpha
with open(f"{lora_path}/adapter_config.json", 'w') as json_file:
json.dump(new_params, json_file,indent=2)
# set the time to the same as adapter_config_BK.json
# Define the paths
reference_file = f"{lora_path}/adapter_config_BK.json"
target_file = f"{lora_path}/adapter_config.json"
# Get the timestamps of the reference file
stat = os.stat(reference_file)
# Apply the same timestamps to the target file
os.utime(target_file, (stat.st_atime, stat.st_mtime))
print(f"{GREEN}Updated alpha in {RESET}adapter_config.json")
else:
print(f"{YELLOW}No change in alpha in {RESET}adapter_config.json")
def Load_and_apply_lora():
selected_lora_main = struct_params["folders_SEL"]
selected_lora_sub = struct_params['subfolders_SEL']
path = path_to_LORA(selected_lora_main, selected_lora_sub)
lora_path = Path(f"{shared.args.lora_dir}/{path}")
selected_lora_main_sub = path
if os.path.isdir(lora_path):
if shared.model_name!='None' and shared.model_name!='':
yield (f"Applying the following LoRAs to {shared.model_name} : {selected_lora_main_sub}")
set_strength()
shared.lora_names = []
loras_before = get_loaded_adapters()
if 'GPTQForCausalLM' in shared.model.__class__.__name__ or shared.args.loader == 'AutoGPTQ':
print("LORA -> AutoGPTQ")
elif shared.model.__class__.__name__ in ['ExllamaModel', 'ExllamaHF'] or shared.args.loader == 'ExLlama':
print("LORA -> Exllama")
elif shared.model.__class__.__name__ in ['Exllamav2Model', 'Exllamav2HF'] or shared.args.loader == ['ExLlamav2', 'ExLlamav2_HF']:
print("LORA -> Exllama V2")
else:
# shared.model may no longer be PeftModel
print("LORA -> Transformers [PEFT]")
# use unload - unload doesn't actually work? The adapters are not really deleted. So what is unloaded?
#modeltype = shared.model.__class__.__name__
#if hasattr(shared.model,'unload'):
# print (f"{RED} Unloading PEFT adapter{RESET} from model {YELLOW}{modeltype}{RESET}")
# shared.model = shared.model.unload()
# get_available_adapters_ui()
#else:
# print(f"Starting from {YELLOW}clean{RESET} model {YELLOW}{modeltype}{RESET}")
if hasattr(shared.model, 'disable_adapter'):
print (RED+"Disable PEFT adapter"+RESET)
shared.model.disable_adapter()
adapters = list(shared.model.peft_config.keys())
for adapter in adapters:
print(f" - Deleting {RED}{adapter}{RESET}", end='')
shared.model.delete_adapter(adapter)
if adapter not in list(shared.model.peft_config.keys()):
print(f" {GREEN}[OK]{RESET}")
else:
print(f" {RED}[FAILED]{RESET}")
modeltype = shared.model.__class__.__name__
if hasattr(shared.model, 'base_model'):
if hasattr(shared.model.base_model, 'model'):
modelbasetype = shared.model.base_model.model.__class__.__name__
print(f"Returning model {YELLOW}{modeltype}{RESET} back to {YELLOW}{modelbasetype}{RESET}")
shared.model = shared.model.base_model.model
else:
print(f"Starting from {YELLOW}clean{RESET} model {YELLOW}{modeltype}{RESET}")
else:
print(f"Note: {modeltype} has no base_model")
modeltype = shared.model.__class__.__name__
print(f"Creating {GREEN}PEFT{RESET} model for {YELLOW}{modeltype}{RESET}")
#if len(loras_before) == 0:
add_lora_to_model(selected_lora_main_sub)
modeltype = shared.model.__class__.__name__
if hasattr(shared.model, 'base_model'):
if hasattr(shared.model.base_model, 'model'):
modelbasetype = shared.model.base_model.model.__class__.__name__
print(f"{GREEN}[OK] {RESET} Model {YELLOW}{modeltype}{RESET} created on top of {YELLOW}{modelbasetype}{RESET} with {GREEN}{selected_lora_main_sub}{RESET}")
adapter_name = getattr(shared.model,'active_adapter','None')
print (f"{YELLOW}Active adapter:{RESET} {adapter_name}")
else:
print(f"{RED}Error - no PEFT model created for{RESET} {YELLOW}{modeltype}{RESET}")
else:
print(f"Model {YELLOW}{modeltype}{RESET} with {GREEN}{selected_lora_main_sub}{RESET}")
adapter_name = getattr(shared.model,'active_adapter','')
if adapter_name!='':
print (f"{YELLOW}Active adapter:{RESET} {adapter_name}")
else:
print (f"Note: {YELLOW}{modeltype}:{RESET} has no support for switching adapters")
if hasattr(shared.model, 'set_adapter'):
loras_after = get_loaded_adapters()
if loras_before == loras_after:
yield "Nothing changed..."
else:
yield f"Successfuly applied new adapter: {selected_lora_main_sub}"
else:
yield f"Applied adapter: {selected_lora_main_sub}"
else:
print("you have no model loaded yet!")
yield 'No Model loaded...'
def add_lora_to_PEFT():
selected_lora_main = struct_params["folders_SEL"]
selected_lora_sub = struct_params['subfolders_SEL']
path = path_to_LORA(selected_lora_main, selected_lora_sub)
lora_path = Path(f"{shared.args.lora_dir}/{path}")
selected_lora_main_sub = path
print(f"{YELLOW}Adding Lora from:{RESET} {lora_path}")
if os.path.isdir(lora_path):
loras_before = get_loaded_adapters()
if len(loras_before) == 0:
yield (f"First lora needs to be loaded with Load Lora")
else:
if shared.model_name!='None' and shared.model_name!='':
yield (f"Adding the following LoRAs to {shared.model_name} : {selected_lora_main_sub}")
newkey = selected_lora_main_sub
safeloraname = newkey.replace('.', '_')
shared.model.load_adapter(lora_path, safeloraname)
loras_after = get_loaded_adapters()
if loras_before == loras_after:
print("No Lora Added")
yield 'No Lora added...'
else:
# get last item of loras_after
last_lora = loras_after[-1]
print (f"{GREEN}Added Lora: {RESET} {last_lora}")
yield (f"Added Lora {last_lora}")
Select_last_lora()
adapter_name = getattr(shared.model,'active_adapter','None')
print (f"Active adapter: {adapter_name}")
def set_adapter(item):
if shared.model == None:
print(f"No Model loaded")
return
print(RED+ 'SET LORA:'+RESET)
if hasattr(shared.model, 'set_adapter') and hasattr(shared.model, 'active_adapter'):
#if prior_set:
if hasattr(shared.model, 'base_model'):
if hasattr(shared.model.base_model, 'model'):
modelbasetype = shared.model.base_model.__class__.__name__
else:
modelbasetype = 'None'
else:
modelbasetype = 'None'
modeltype = shared.model.__class__.__name__
if hasattr(shared.model, 'base_model'):
if not hasattr(shared.model.base_model, 'disable_adapter_layers'):
print(f"{RED} ERROR {RESET} {YELLOW}{modeltype}{RESET} ({modelbasetype}) is not PEFT model (PeftModelForCausalLM). You need to Load Lora first.")
return
if (item =='None' or item == None or item == ''):
shared.model.base_model.disable_adapter_layers()
print (f"{RED} [Disable]{RESET} Adapters in {YELLOW}{modeltype}{RESET} ({modelbasetype})")
else:
adapters = get_loaded_adapters()
if item in adapters:
shared.model.set_adapter(item)
if hasattr(shared.model.base_model, 'enable_adapter_layers'):
shared.model.base_model.enable_adapter_layers()
print (f"{GREEN} [Enable]{RESET} {shared.model.active_adapter} in {YELLOW}{modeltype}{RESET} ({modelbasetype})")
else:
print(f"{RED} ERROR {RESET} {YELLOW}{modeltype}{RESET} with base {YELLOW}{modelbasetype}{RESET} is not correct PEFT model.")
else:
print (f"No or unknown Adapter {item} in {adapters}")
shared.model.base_model.disable_adapter_layers()
print (f"{RED} [Disable]{RESET} Adapters in {YELLOW}{modeltype}{RESET} ({modelbasetype})")
else:
print(f"{shared.model.__class__.__name__} has no support for switching adapters")
def Select_last_lora():
loras_before = get_loaded_adapters()
last_element = loras_before[-1]
set_adapter(last_element)
def ui():
global struct_params
global folder_tree
load_pickle()
text_file = load_folder_file(struct_params['selected_template'])
create_folder_tree(text_file)
list_fold = get_folder_list(struct_params['root_SEL'])
list_checkpoints = []
selected_lora_main = struct_params["folders_SEL"]
if selected_lora_main !='' and selected_lora_main!="None":
model_dir = f"{shared.args.lora_dir}/{selected_lora_main}" # Update with the appropriate directory path
list_checkpoints = list_subfolders(model_dir)
html_text = load_log()
html_note = load_note()
if shared.model:
model_name = str(getattr(shared.model,'active_adapter','None'))
else:
model_name = str('None')
with gr.Tab('Lora'):
with gr.Row():
gr_Loralmenu = gr.Radio(choices=get_available_adapters_ui(), value=model_name, label='Activate adapter', interactive=True)
gr_Loralmenu_refresh = gr.Button(value=refresh_symbol, elem_classes='refresh-button')
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
para_templates_drop = gr.Dropdown(choices=get_available_templates(), label='Collection Set', value=struct_params['selected_template'])
with gr.Row():
gr.Markdown(' ')
with gr.Column(scale=3):
gr_displayLine2 = gr.HTML(html_note)
with gr.Column():
gr_displayLine = gr.HTML(html_text)